Struct CachePadded
struct CachePadded<T> { ... }
Pads and aligns a value to the length of a cache line.
In concurrent programming, sometimes it is desirable to make sure commonly accessed pieces of
data are not placed into the same cache line. Updating an atomic value invalidates the whole
cache line it belongs to, which makes the next access to the same cache line slower for other
CPU cores. Use CachePadded to ensure updating one piece of data doesn't invalidate other
cached data.
Size and alignment
Cache lines are assumed to be N bytes long, depending on the architecture:
- On x86-64, aarch64, and powerpc64, N = 128.
- On arm, mips, mips64, sparc, and hexagon, N = 32.
- On m68k, N = 16.
- On s390x, N = 256.
- On all others, N = 64.
Note that N is just a reasonable guess and is not guaranteed to match the actual cache line length of the machine the program is running on. On modern Intel architectures, spatial prefetcher is pulling pairs of 64-byte cache lines at a time, so we pessimistically assume that cache lines are 128 bytes long.
The size of CachePadded<T> is the smallest multiple of N bytes large enough to accommodate
a value of type T.
The alignment of CachePadded<T> is the maximum of N bytes and the alignment of T.
Examples
Alignment and padding:
use CachePadded;
let array = ;
let addr1 = &*array as *const i8 as usize;
let addr2 = &*array as *const i8 as usize;
assert!;
assert_eq!;
assert_eq!;
When building a concurrent queue with a head and a tail index, it is wise to place them in different cache lines so that concurrent threads pushing and popping elements don't invalidate each other's cache lines:
use CachePadded;
use AtomicUsize;
Implementations
impl<T> CachePadded<T>
const fn new(t: T) -> CachePadded<T>Pads and aligns a value to the length of a cache line.
Examples
use CachePadded; let padded_value = new;fn into_inner(self: Self) -> TReturns the inner value.
Examples
use CachePadded; let padded_value = new; let value = padded_value.into_inner; assert_eq!;
impl<P, T> Receiver for CachePadded<T>
impl<T> Any for CachePadded<T>
fn type_id(self: &Self) -> TypeId
impl<T> Borrow for CachePadded<T>
fn borrow(self: &Self) -> &T
impl<T> BorrowMut for CachePadded<T>
fn borrow_mut(self: &mut Self) -> &mut T
impl<T> CloneToUninit for CachePadded<T>
unsafe fn clone_to_uninit(self: &Self, dest: *mut u8)
impl<T> Deref for CachePadded<T>
fn deref(self: &Self) -> &T
impl<T> DerefMut for CachePadded<T>
fn deref_mut(self: &mut Self) -> &mut T
impl<T> Freeze for CachePadded<T>
impl<T> From for CachePadded<T>
fn from(t: T) -> Self
impl<T> From for CachePadded<T>
fn from(t: never) -> T
impl<T> From for CachePadded<T>
fn from(t: T) -> TReturns the argument unchanged.
impl<T> RefUnwindSafe for CachePadded<T>
impl<T> StructuralPartialEq for CachePadded<T>
impl<T> ToOwned for CachePadded<T>
fn to_owned(self: &Self) -> Tfn clone_into(self: &Self, target: &mut T)
impl<T> Unpin for CachePadded<T>
impl<T> UnwindSafe for CachePadded<T>
impl<T, U> Into for CachePadded<T>
fn into(self: Self) -> UCalls
U::from(self).That is, this conversion is whatever the implementation of
[From]<T> for Uchooses to do.
impl<T, U> TryFrom for CachePadded<T>
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
impl<T, U> TryInto for CachePadded<T>
fn try_into(self: Self) -> Result<U, <U as TryFrom<T>>::Error>
impl<T: $crate::clone::Clone> Clone for CachePadded<T>
fn clone(self: &Self) -> CachePadded<T>
impl<T: $crate::cmp::Eq> Eq for CachePadded<T>
impl<T: $crate::cmp::PartialEq> PartialEq for CachePadded<T>
fn eq(self: &Self, other: &CachePadded<T>) -> bool
impl<T: $crate::default::Default> Default for CachePadded<T>
fn default() -> CachePadded<T>
impl<T: $crate::hash::Hash> Hash for CachePadded<T>
fn hash<__H: $crate::hash::Hasher>(self: &Self, state: &mut __H)
impl<T: $crate::marker::Copy> Copy for CachePadded<T>
impl<T: Send> Send for CachePadded<T>
impl<T: Sync> Sync for CachePadded<T>
impl<T: fmt::Debug> Debug for CachePadded<T>
fn fmt(self: &Self, f: &mut fmt::Formatter<'_>) -> fmt::Result