Struct Arg

struct Arg { ... }

The abstract representation of a command line argument. Used to set all the options and relationships that define a valid argument for the program.

There are two methods for constructing Args, using the builder pattern and setting options manually, or using a usage string which is far less verbose but has fewer options. You can also use a combination of the two methods to achieve the best of both worlds.

Examples

# use clap_builder as clap;
# use clap::{Arg, arg, ArgAction};
// Using the traditional builder pattern and setting each option manually
let cfg = Arg::new("config")
      .short('c')
      .long("config")
      .action(ArgAction::Set)
      .value_name("FILE")
      .help("Provides a config file to myprog");
// Using a usage string (setting a similar argument to the one above)
let input = arg!(-i --input <FILE> "Provides an input file to the program");

Implementations

impl Arg

fn group<impl IntoResettable<Id>: IntoResettable<Id>>(self: Self, group_id: impl IntoResettable<Id>) -> Self

The name of the ArgGroup the argument belongs to.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
Arg::new("debug")
    .long("debug")
    .action(ArgAction::SetTrue)
    .group("mode")
# ;

Multiple arguments can be a member of a single group and then the group checked as if it was one of said arguments.

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let m = Command::new("prog")
    .arg(Arg::new("debug")
        .long("debug")
        .action(ArgAction::SetTrue)
        .group("mode"))
    .arg(Arg::new("verbose")
        .long("verbose")
        .action(ArgAction::SetTrue)
        .group("mode"))
    .get_matches_from(vec![
        "prog", "--debug"
    ]);
assert!(m.contains_id("mode"));
fn groups<impl Into<Id>: Into<Id>, impl IntoIterator<Item = impl Into<Id>>: IntoIterator<Item = impl Into<Id>>>(self: Self, group_ids: impl IntoIterator<Item = impl Into<Id>>) -> Self

The names of ArgGroup's the argument belongs to.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
Arg::new("debug")
    .long("debug")
    .action(ArgAction::SetTrue)
    .groups(["mode", "verbosity"])
# ;

Arguments can be members of multiple groups and then the group checked as if it was one of said arguments.

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let m = Command::new("prog")
    .arg(Arg::new("debug")
        .long("debug")
        .action(ArgAction::SetTrue)
        .groups(["mode", "verbosity"]))
    .arg(Arg::new("verbose")
        .long("verbose")
        .action(ArgAction::SetTrue)
        .groups(["mode", "verbosity"]))
    .get_matches_from(vec![
        "prog", "--debug"
    ]);
assert!(m.contains_id("mode"));
assert!(m.contains_id("verbosity"));
fn default_value_if<impl Into<Id>: Into<Id>, impl Into<ArgPredicate>: Into<ArgPredicate>, impl IntoResettable<OsStr>: IntoResettable<OsStr>>(self: Self, arg_id: impl Into<Id>, predicate: impl Into<ArgPredicate>, default: impl IntoResettable<OsStr>) -> Self

Specifies the value of the argument if arg has been used at runtime.

If default is set to None, default_value will be removed.

Like with command-line values, this will be split by Arg::value_delimiter.

NOTE: This setting is perfectly compatible with Arg::default_value but slightly different. Arg::default_value only takes effect when the user has not provided this arg at runtime. This setting however only takes effect when the user has not provided a value at runtime and these other conditions are met as well. If you have set Arg::default_value and Arg::default_value_if, and the user did not provide this arg at runtime, nor were the conditions met for Arg::default_value_if, the Arg::default_value will be applied.

Examples

First we use the default value only if another arg is present at runtime.

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
# use clap::builder::{ArgPredicate};
let m = Command::new("prog")
    .arg(Arg::new("flag")
        .long("flag")
        .action(ArgAction::SetTrue))
    .arg(Arg::new("other")
        .long("other")
        .default_value_if("flag", ArgPredicate::IsPresent, Some("default")))
    .get_matches_from(vec![
        "prog", "--flag"
    ]);

assert_eq!(m.get_one::<String>("other").unwrap(), "default");

Next we run the same test, but without providing --flag.

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let m = Command::new("prog")
    .arg(Arg::new("flag")
        .long("flag")
        .action(ArgAction::SetTrue))
    .arg(Arg::new("other")
        .long("other")
        .default_value_if("flag", "true", Some("default")))
    .get_matches_from(vec![
        "prog"
    ]);

assert_eq!(m.get_one::<String>("other"), None);

Now lets only use the default value if --opt contains the value special.

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let m = Command::new("prog")
    .arg(Arg::new("opt")
        .action(ArgAction::Set)
        .long("opt"))
    .arg(Arg::new("other")
        .long("other")
        .default_value_if("opt", "special", Some("default")))
    .get_matches_from(vec![
        "prog", "--opt", "special"
    ]);

assert_eq!(m.get_one::<String>("other").unwrap(), "default");

We can run the same test and provide any value other than special and we won't get a default value.

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let m = Command::new("prog")
    .arg(Arg::new("opt")
        .action(ArgAction::Set)
        .long("opt"))
    .arg(Arg::new("other")
        .long("other")
        .default_value_if("opt", "special", Some("default")))
    .get_matches_from(vec![
        "prog", "--opt", "hahaha"
    ]);

assert_eq!(m.get_one::<String>("other"), None);

If we want to unset the default value for an Arg based on the presence or value of some other Arg.

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let m = Command::new("prog")
    .arg(Arg::new("flag")
        .long("flag")
        .action(ArgAction::SetTrue))
    .arg(Arg::new("other")
        .long("other")
        .default_value("default")
        .default_value_if("flag", "true", None))
    .get_matches_from(vec![
        "prog", "--flag"
    ]);

assert_eq!(m.get_one::<String>("other"), None);
fn default_value_ifs<impl Into<Id>: Into<Id>, impl Into<ArgPredicate>: Into<ArgPredicate>, impl IntoResettable<OsStr>: IntoResettable<OsStr>, impl IntoIterator<Item = (impl Into<Id>, impl Into<ArgPredicate>, impl IntoResettable<OsStr>)>: IntoIterator<Item = (impl Into<Id>, impl Into<ArgPredicate>, impl IntoResettable<OsStr>)>>(self: Self, ifs: impl IntoIterator<Item = (impl Into<Id>, impl Into<ArgPredicate>, impl IntoResettable<OsStr>)>) -> Self

Specifies multiple values and conditions in the same manner as Arg::default_value_if.

The method takes a slice of tuples in the (arg, predicate, default) format.

Like with command-line values, this will be split by Arg::value_delimiter.

NOTE: The conditions are stored in order and evaluated in the same order. I.e. the first if multiple conditions are true, the first one found will be applied and the ultimate value.

Examples

First we use the default value only if another arg is present at runtime.

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let m = Command::new("prog")
    .arg(Arg::new("flag")
        .long("flag")
        .action(ArgAction::SetTrue))
    .arg(Arg::new("opt")
        .long("opt")
        .action(ArgAction::Set))
    .arg(Arg::new("other")
        .long("other")
        .default_value_ifs([
            ("flag", "true", Some("default")),
            ("opt", "channal", Some("chan")),
        ]))
    .get_matches_from(vec![
        "prog", "--opt", "channal"
    ]);

assert_eq!(m.get_one::<String>("other").unwrap(), "chan");

Next we run the same test, but without providing --flag.

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let m = Command::new("prog")
    .arg(Arg::new("flag")
        .long("flag")
        .action(ArgAction::SetTrue))
    .arg(Arg::new("other")
        .long("other")
        .default_value_ifs([
            ("flag", "true", Some("default")),
            ("opt", "channal", Some("chan")),
        ]))
    .get_matches_from(vec![
        "prog"
    ]);

assert_eq!(m.get_one::<String>("other"), None);

We can also see that these values are applied in order, and if more than one condition is true, only the first evaluated "wins"

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
# use clap::builder::ArgPredicate;
let m = Command::new("prog")
    .arg(Arg::new("flag")
        .long("flag")
        .action(ArgAction::SetTrue))
    .arg(Arg::new("opt")
        .long("opt")
        .action(ArgAction::Set))
    .arg(Arg::new("other")
        .long("other")
        .default_value_ifs([
            ("flag", ArgPredicate::IsPresent, Some("default")),
            ("opt", ArgPredicate::Equals("channal".into()), Some("chan")),
        ]))
    .get_matches_from(vec![
        "prog", "--opt", "channal", "--flag"
    ]);

assert_eq!(m.get_one::<String>("other").unwrap(), "default");
fn required_unless_present<impl IntoResettable<Id>: IntoResettable<Id>>(self: Self, arg_id: impl IntoResettable<Id>) -> Self

Set this arg as required as long as the specified argument is not present at runtime.

TIP: Using Arg::required_unless_present implies Arg::required and is therefore not mandatory to also set.

Examples

# use clap_builder as clap;
# use clap::Arg;
Arg::new("config")
    .required_unless_present("debug")
# ;

In the following example, the required argument is not provided, but it's not an error because the unless arg has been supplied.

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let res = Command::new("prog")
    .arg(Arg::new("cfg")
        .required_unless_present("dbg")
        .action(ArgAction::Set)
        .long("config"))
    .arg(Arg::new("dbg")
        .long("debug")
        .action(ArgAction::SetTrue))
    .try_get_matches_from(vec![
        "prog", "--debug"
    ]);

assert!(res.is_ok());

Setting Arg::required_unless_present(name) and not supplying name or this arg is an error.

# use clap_builder as clap;
# use clap::{Command, Arg, error::ErrorKind, ArgAction};
let res = Command::new("prog")
    .arg(Arg::new("cfg")
        .required_unless_present("dbg")
        .action(ArgAction::Set)
        .long("config"))
    .arg(Arg::new("dbg")
        .long("debug"))
    .try_get_matches_from(vec![
        "prog"
    ]);

assert!(res.is_err());
assert_eq!(res.unwrap_err().kind(), ErrorKind::MissingRequiredArgument);
fn required_unless_present_all<impl Into<Id>: Into<Id>, impl IntoIterator<Item = impl Into<Id>>: IntoIterator<Item = impl Into<Id>>>(self: Self, names: impl IntoIterator<Item = impl Into<Id>>) -> Self

Sets this arg as required unless all of the specified arguments are present at runtime.

In other words, parsing will succeed only if user either

  • supplies the self arg.
  • supplies all of the names arguments.

NOTE: If you wish for this argument to only be required unless any of these args are present see Arg::required_unless_present_any

Examples

# use clap_builder as clap;
# use clap::Arg;
Arg::new("config")
    .required_unless_present_all(["cfg", "dbg"])
# ;

In the following example, the required argument is not provided, but it's not an error because all of the names args have been supplied.

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let res = Command::new("prog")
    .arg(Arg::new("cfg")
        .required_unless_present_all(["dbg", "infile"])
        .action(ArgAction::Set)
        .long("config"))
    .arg(Arg::new("dbg")
        .long("debug")
        .action(ArgAction::SetTrue))
    .arg(Arg::new("infile")
        .short('i')
        .action(ArgAction::Set))
    .try_get_matches_from(vec![
        "prog", "--debug", "-i", "file"
    ]);

assert!(res.is_ok());

Setting Arg::required_unless_present_all(names) and not supplying either all of unless args or the self arg is an error.

# use clap_builder as clap;
# use clap::{Command, Arg, error::ErrorKind, ArgAction};
let res = Command::new("prog")
    .arg(Arg::new("cfg")
        .required_unless_present_all(["dbg", "infile"])
        .action(ArgAction::Set)
        .long("config"))
    .arg(Arg::new("dbg")
        .long("debug")
        .action(ArgAction::SetTrue))
    .arg(Arg::new("infile")
        .short('i')
        .action(ArgAction::Set))
    .try_get_matches_from(vec![
        "prog"
    ]);

assert!(res.is_err());
assert_eq!(res.unwrap_err().kind(), ErrorKind::MissingRequiredArgument);
fn required_unless_present_any<impl Into<Id>: Into<Id>, impl IntoIterator<Item = impl Into<Id>>: IntoIterator<Item = impl Into<Id>>>(self: Self, names: impl IntoIterator<Item = impl Into<Id>>) -> Self

Sets this arg as required unless any of the specified arguments are present at runtime.

In other words, parsing will succeed only if user either

  • supplies the self arg.
  • supplies one or more of the unless arguments.

NOTE: If you wish for this argument to be required unless all of these args are present see Arg::required_unless_present_all

Examples

# use clap_builder as clap;
# use clap::Arg;
Arg::new("config")
    .required_unless_present_any(["cfg", "dbg"])
# ;

Setting Arg::required_unless_present_any(names) requires that the argument be used at runtime unless at least one of the args in names are present. In the following example, the required argument is not provided, but it's not an error because one the unless args have been supplied.

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let res = Command::new("prog")
    .arg(Arg::new("cfg")
        .required_unless_present_any(["dbg", "infile"])
        .action(ArgAction::Set)
        .long("config"))
    .arg(Arg::new("dbg")
        .long("debug")
        .action(ArgAction::SetTrue))
    .arg(Arg::new("infile")
        .short('i')
        .action(ArgAction::Set))
    .try_get_matches_from(vec![
        "prog", "--debug"
    ]);

assert!(res.is_ok());

Setting Arg::required_unless_present_any(names) and not supplying at least one of names or this arg is an error.

# use clap_builder as clap;
# use clap::{Command, Arg, error::ErrorKind, ArgAction};
let res = Command::new("prog")
    .arg(Arg::new("cfg")
        .required_unless_present_any(["dbg", "infile"])
        .action(ArgAction::Set)
        .long("config"))
    .arg(Arg::new("dbg")
        .long("debug")
        .action(ArgAction::SetTrue))
    .arg(Arg::new("infile")
        .short('i')
        .action(ArgAction::Set))
    .try_get_matches_from(vec![
        "prog"
    ]);

assert!(res.is_err());
assert_eq!(res.unwrap_err().kind(), ErrorKind::MissingRequiredArgument);
fn required_if_eq<impl Into<Id>: Into<Id>, impl Into<OsStr>: Into<OsStr>>(self: Self, arg_id: impl Into<Id>, val: impl Into<OsStr>) -> Self

This argument is required only if the specified arg is present at runtime and its value equals val.

Examples

# use clap_builder as clap;
# use clap::Arg;
Arg::new("config")
    .required_if_eq("other_arg", "value")
# ;
# use clap_builder as clap;
# use clap::{Command, Arg, error::ErrorKind, ArgAction};
let res = Command::new("prog")
    .arg(Arg::new("cfg")
        .action(ArgAction::Set)
        .required_if_eq("other", "special")
        .long("config"))
    .arg(Arg::new("other")
        .long("other")
        .action(ArgAction::Set))
    .try_get_matches_from(vec![
        "prog", "--other", "not-special"
    ]);

assert!(res.is_ok()); // We didn't use --other=special, so "cfg" wasn't required

let res = Command::new("prog")
    .arg(Arg::new("cfg")
        .action(ArgAction::Set)
        .required_if_eq("other", "special")
        .long("config"))
    .arg(Arg::new("other")
        .long("other")
        .action(ArgAction::Set))
    .try_get_matches_from(vec![
        "prog", "--other", "special"
    ]);

// We did use --other=special so "cfg" had become required but was missing.
assert!(res.is_err());
assert_eq!(res.unwrap_err().kind(), ErrorKind::MissingRequiredArgument);

let res = Command::new("prog")
    .arg(Arg::new("cfg")
        .action(ArgAction::Set)
        .required_if_eq("other", "special")
        .long("config"))
    .arg(Arg::new("other")
        .long("other")
        .action(ArgAction::Set))
    .try_get_matches_from(vec![
        "prog", "--other", "SPECIAL"
    ]);

// By default, the comparison is case-sensitive, so "cfg" wasn't required
assert!(res.is_ok());

let res = Command::new("prog")
    .arg(Arg::new("cfg")
        .action(ArgAction::Set)
        .required_if_eq("other", "special")
        .long("config"))
    .arg(Arg::new("other")
        .long("other")
        .ignore_case(true)
        .action(ArgAction::Set))
    .try_get_matches_from(vec![
        "prog", "--other", "SPECIAL"
    ]);

// However, case-insensitive comparisons can be enabled.  This typically occurs when using Arg::possible_values().
assert!(res.is_err());
assert_eq!(res.unwrap_err().kind(), ErrorKind::MissingRequiredArgument);
fn required_if_eq_any<impl Into<Id>: Into<Id>, impl Into<OsStr>: Into<OsStr>, impl IntoIterator<Item = (impl Into<Id>, impl Into<OsStr>)>: IntoIterator<Item = (impl Into<Id>, impl Into<OsStr>)>>(self: Self, ifs: impl IntoIterator<Item = (impl Into<Id>, impl Into<OsStr>)>) -> Self

Specify this argument is required based on multiple conditions.

The conditions are set up in a (arg, val) style tuple. The requirement will only become valid if one of the specified arg's value equals its corresponding val.

Examples

# use clap_builder as clap;
# use clap::Arg;
Arg::new("config")
    .required_if_eq_any([
        ("extra", "val"),
        ("option", "spec")
    ])
# ;

Setting Arg::required_if_eq_any([(arg, val)]) makes this arg required if any of the args are used at runtime and it's corresponding value is equal to val. If the arg's value is anything other than val, this argument isn't required.

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let res = Command::new("prog")
    .arg(Arg::new("cfg")
        .required_if_eq_any([
            ("extra", "val"),
            ("option", "spec")
        ])
        .action(ArgAction::Set)
        .long("config"))
    .arg(Arg::new("extra")
        .action(ArgAction::Set)
        .long("extra"))
    .arg(Arg::new("option")
        .action(ArgAction::Set)
        .long("option"))
    .try_get_matches_from(vec![
        "prog", "--option", "other"
    ]);

assert!(res.is_ok()); // We didn't use --option=spec, or --extra=val so "cfg" isn't required

Setting Arg::required_if_eq_any([(arg, val)]) and having any of the args used with its value of val but not using this arg is an error.

# use clap_builder as clap;
# use clap::{Command, Arg, error::ErrorKind, ArgAction};
let res = Command::new("prog")
    .arg(Arg::new("cfg")
        .required_if_eq_any([
            ("extra", "val"),
            ("option", "spec")
        ])
        .action(ArgAction::Set)
        .long("config"))
    .arg(Arg::new("extra")
        .action(ArgAction::Set)
        .long("extra"))
    .arg(Arg::new("option")
        .action(ArgAction::Set)
        .long("option"))
    .try_get_matches_from(vec![
        "prog", "--option", "spec"
    ]);

assert!(res.is_err());
assert_eq!(res.unwrap_err().kind(), ErrorKind::MissingRequiredArgument);
fn required_if_eq_all<impl Into<Id>: Into<Id>, impl Into<OsStr>: Into<OsStr>, impl IntoIterator<Item = (impl Into<Id>, impl Into<OsStr>)>: IntoIterator<Item = (impl Into<Id>, impl Into<OsStr>)>>(self: Self, ifs: impl IntoIterator<Item = (impl Into<Id>, impl Into<OsStr>)>) -> Self

Specify this argument is required based on multiple conditions.

The conditions are set up in a (arg, val) style tuple. The requirement will only become valid if every one of the specified arg's value equals its corresponding val.

Examples

# use clap_builder as clap;
# use clap::Arg;
Arg::new("config")
    .required_if_eq_all([
        ("extra", "val"),
        ("option", "spec")
    ])
# ;

Setting Arg::required_if_eq_all([(arg, val)]) makes this arg required if all of the args are used at runtime and every value is equal to its corresponding val. If the arg's value is anything other than val, this argument isn't required.

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let res = Command::new("prog")
    .arg(Arg::new("cfg")
        .required_if_eq_all([
            ("extra", "val"),
            ("option", "spec")
        ])
        .action(ArgAction::Set)
        .long("config"))
    .arg(Arg::new("extra")
        .action(ArgAction::Set)
        .long("extra"))
    .arg(Arg::new("option")
        .action(ArgAction::Set)
        .long("option"))
    .try_get_matches_from(vec![
        "prog", "--option", "spec"
    ]);

assert!(res.is_ok()); // We didn't use --option=spec --extra=val so "cfg" isn't required

Setting Arg::required_if_eq_all([(arg, val)]) and having all of the args used with its value of val but not using this arg is an error.

# use clap_builder as clap;
# use clap::{Command, Arg, error::ErrorKind, ArgAction};
let res = Command::new("prog")
    .arg(Arg::new("cfg")
        .required_if_eq_all([
            ("extra", "val"),
            ("option", "spec")
        ])
        .action(ArgAction::Set)
        .long("config"))
    .arg(Arg::new("extra")
        .action(ArgAction::Set)
        .long("extra"))
    .arg(Arg::new("option")
        .action(ArgAction::Set)
        .long("option"))
    .try_get_matches_from(vec![
        "prog", "--extra", "val", "--option", "spec"
    ]);

assert!(res.is_err());
assert_eq!(res.unwrap_err().kind(), ErrorKind::MissingRequiredArgument);
fn requires_if<impl Into<ArgPredicate>: Into<ArgPredicate>, impl Into<Id>: Into<Id>>(self: Self, val: impl Into<ArgPredicate>, arg_id: impl Into<Id>) -> Self

Require another argument if this arg matches the ArgPredicate

This method takes value, another_arg pair. At runtime, clap will check if this arg (self) matches the ArgPredicate. If it does, another_arg will be marked as required.

Examples

# use clap_builder as clap;
# use clap::Arg;
Arg::new("config")
    .requires_if("val", "arg")
# ;

Setting Arg::requires_if(val, arg) requires that the arg be used at runtime if the defining argument's value is equal to val. If the defining argument is anything other than val, the other argument isn't required.

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let res = Command::new("prog")
    .arg(Arg::new("cfg")
        .action(ArgAction::Set)
        .requires_if("my.cfg", "other")
        .long("config"))
    .arg(Arg::new("other"))
    .try_get_matches_from(vec![
        "prog", "--config", "some.cfg"
    ]);

assert!(res.is_ok()); // We didn't use --config=my.cfg, so other wasn't required

Setting Arg::requires_if(val, arg) and setting the value to val but not supplying arg is an error.

# use clap_builder as clap;
# use clap::{Command, Arg, error::ErrorKind, ArgAction};
let res = Command::new("prog")
    .arg(Arg::new("cfg")
        .action(ArgAction::Set)
        .requires_if("my.cfg", "input")
        .long("config"))
    .arg(Arg::new("input"))
    .try_get_matches_from(vec![
        "prog", "--config", "my.cfg"
    ]);

assert!(res.is_err());
assert_eq!(res.unwrap_err().kind(), ErrorKind::MissingRequiredArgument);
fn requires_ifs<impl Into<ArgPredicate>: Into<ArgPredicate>, impl Into<Id>: Into<Id>, impl IntoIterator<Item = (impl Into<ArgPredicate>, impl Into<Id>)>: IntoIterator<Item = (impl Into<ArgPredicate>, impl Into<Id>)>>(self: Self, ifs: impl IntoIterator<Item = (impl Into<ArgPredicate>, impl Into<Id>)>) -> Self

Allows multiple conditional requirements.

The requirement will only become valid if this arg's value matches the ArgPredicate.

Examples

# use clap_builder as clap;
# use clap::Arg;
Arg::new("config")
    .requires_ifs([
        ("val", "arg"),
        ("other_val", "arg2"),
    ])
# ;

Setting Arg::requires_ifs(["val", "arg"]) requires that the arg be used at runtime if the defining argument's value is equal to val. If the defining argument's value is anything other than val, arg isn't required.

# use clap_builder as clap;
# use clap::{Command, Arg, error::ErrorKind, ArgAction};
let res = Command::new("prog")
    .arg(Arg::new("cfg")
        .action(ArgAction::Set)
        .requires_ifs([
            ("special.conf", "opt"),
            ("other.conf", "other"),
        ])
        .long("config"))
    .arg(Arg::new("opt")
        .long("option")
        .action(ArgAction::Set))
    .arg(Arg::new("other"))
    .try_get_matches_from(vec![
        "prog", "--config", "special.conf"
    ]);

assert!(res.is_err()); // We  used --config=special.conf so --option <val> is required
assert_eq!(res.unwrap_err().kind(), ErrorKind::MissingRequiredArgument);

Setting Arg::requires_ifs with ArgPredicate::IsPresent and not supplying all the arguments is an error.

# use clap_builder as clap;
# use clap::{Command, Arg, error::ErrorKind, ArgAction, builder::ArgPredicate};
let res = Command::new("prog")
    .arg(Arg::new("cfg")
        .action(ArgAction::Set)
        .requires_ifs([
            (ArgPredicate::IsPresent, "input"),
            (ArgPredicate::IsPresent, "output"),
        ])
        .long("config"))
    .arg(Arg::new("input"))
    .arg(Arg::new("output"))
    .try_get_matches_from(vec![
        "prog", "--config", "file.conf", "in.txt"
    ]);

assert!(res.is_err());
// We didn't use output
assert_eq!(res.unwrap_err().kind(), ErrorKind::MissingRequiredArgument);
fn conflicts_with<impl IntoResettable<Id>: IntoResettable<Id>>(self: Self, arg_id: impl IntoResettable<Id>) -> Self

This argument is mutually exclusive with the specified argument.

NOTE: Conflicting rules take precedence over being required by default. Conflict rules only need to be set for one of the two arguments, they do not need to be set for each.

NOTE: Defining a conflict is two-way, but does not need to defined for both arguments (i.e. if A conflicts with B, defining A.conflicts_with(B) is sufficient. You do not need to also do B.conflicts_with(A))

NOTE: Arg::conflicts_with_all(names) allows specifying an argument which conflicts with more than one argument.

NOTE Arg::exclusive(true) allows specifying an argument which conflicts with every other argument.

NOTE: All arguments implicitly conflict with themselves.

Examples

# use clap_builder as clap;
# use clap::Arg;
Arg::new("config")
    .conflicts_with("debug")
# ;

Setting conflicting argument, and having both arguments present at runtime is an error.

# use clap_builder as clap;
# use clap::{Command, Arg, error::ErrorKind, ArgAction};
let res = Command::new("prog")
    .arg(Arg::new("cfg")
        .action(ArgAction::Set)
        .conflicts_with("debug")
        .long("config"))
    .arg(Arg::new("debug")
        .long("debug")
        .action(ArgAction::SetTrue))
    .try_get_matches_from(vec![
        "prog", "--debug", "--config", "file.conf"
    ]);

assert!(res.is_err());
assert_eq!(res.unwrap_err().kind(), ErrorKind::ArgumentConflict);
fn conflicts_with_all<impl Into<Id>: Into<Id>, impl IntoIterator<Item = impl Into<Id>>: IntoIterator<Item = impl Into<Id>>>(self: Self, names: impl IntoIterator<Item = impl Into<Id>>) -> Self

This argument is mutually exclusive with the specified arguments.

See Arg::conflicts_with.

NOTE: Conflicting rules take precedence over being required by default. Conflict rules only need to be set for one of the two arguments, they do not need to be set for each.

NOTE: Defining a conflict is two-way, but does not need to defined for both arguments (i.e. if A conflicts with B, defining A.conflicts_with(B) is sufficient. You do not need need to also do B.conflicts_with(A))

NOTE: Arg::exclusive(true) allows specifying an argument which conflicts with every other argument.

Examples

# use clap_builder as clap;
# use clap::Arg;
Arg::new("config")
    .conflicts_with_all(["debug", "input"])
# ;

Setting conflicting argument, and having any of the arguments present at runtime with a conflicting argument is an error.

# use clap_builder as clap;
# use clap::{Command, Arg, error::ErrorKind, ArgAction};
let res = Command::new("prog")
    .arg(Arg::new("cfg")
        .action(ArgAction::Set)
        .conflicts_with_all(["debug", "input"])
        .long("config"))
    .arg(Arg::new("debug")
        .long("debug"))
    .arg(Arg::new("input"))
    .try_get_matches_from(vec![
        "prog", "--config", "file.conf", "file.txt"
    ]);

assert!(res.is_err());
assert_eq!(res.unwrap_err().kind(), ErrorKind::ArgumentConflict);
fn overrides_with<impl IntoResettable<Id>: IntoResettable<Id>>(self: Self, arg_id: impl IntoResettable<Id>) -> Self

Sets an overridable argument.

i.e. this argument and the following argument will override each other in POSIX style (whichever argument was specified at runtime last "wins")

NOTE: When an argument is overridden it is essentially as if it never was used, any conflicts, requirements, etc. are evaluated after all "overrides" have been removed

NOTE: Overriding an argument implies they [conflict][Arg::conflicts_with`].

Examples

# use clap_builder as clap;
# use clap::{Command, arg};
let m = Command::new("prog")
    .arg(arg!(-f --flag "some flag")
        .conflicts_with("debug"))
    .arg(arg!(-d --debug "other flag"))
    .arg(arg!(-c --color "third flag")
        .overrides_with("flag"))
    .get_matches_from(vec![
        "prog", "-f", "-d", "-c"]);
            //    ^~~~~~~~~~~~^~~~~ flag is overridden by color

assert!(m.get_flag("color"));
assert!(m.get_flag("debug")); // even though flag conflicts with debug, it's as if flag
                                // was never used because it was overridden with color
assert!(!m.get_flag("flag"));
fn overrides_with_all<impl Into<Id>: Into<Id>, impl IntoIterator<Item = impl Into<Id>>: IntoIterator<Item = impl Into<Id>>>(self: Self, names: impl IntoIterator<Item = impl Into<Id>>) -> Self

Sets multiple mutually overridable arguments by name.

i.e. this argument and the following argument will override each other in POSIX style (whichever argument was specified at runtime last "wins")

NOTE: When an argument is overridden it is essentially as if it never was used, any conflicts, requirements, etc. are evaluated after all "overrides" have been removed

NOTE: Overriding an argument implies they [conflict][Arg::conflicts_with_all`].

Examples

# use clap_builder as clap;
# use clap::{Command, arg};
let m = Command::new("prog")
    .arg(arg!(-f --flag "some flag")
        .conflicts_with("color"))
    .arg(arg!(-d --debug "other flag"))
    .arg(arg!(-c --color "third flag")
        .overrides_with_all(["flag", "debug"]))
    .get_matches_from(vec![
        "prog", "-f", "-d", "-c"]);
            //    ^~~~~~^~~~~~~~~ flag and debug are overridden by color

assert!(m.get_flag("color")); // even though flag conflicts with color, it's as if flag
                                // and debug were never used because they were overridden
                                // with color
assert!(!m.get_flag("debug"));
assert!(!m.get_flag("flag"));

impl Arg

fn help<impl IntoResettable<StyledStr>: IntoResettable<StyledStr>>(self: Self, h: impl IntoResettable<StyledStr>) -> Self

Sets the description of the argument for short help (-h).

Typically, this is a short (one line) description of the arg.

If Arg::long_help is not specified, this message will be displayed for --help.

NOTE: Only Arg::help is used in completion script generation in order to be concise

Examples

Any valid UTF-8 is allowed in the help text. The one exception is when one wishes to include a newline in the help text and have the following text be properly aligned with all the other help text.

Setting help displays a short message to the side of the argument when the user passes -h or --help (by default).

# #[cfg(feature = "help")] {
# use clap_builder as clap;
# use clap::{Command, Arg};
let m = Command::new("prog")
    .arg(Arg::new("cfg")
        .long("config")
        .help("Some help text describing the --config arg"))
    .get_matches_from(vec![
        "prog", "--help"
    ]);
# }

The above example displays

helptest

Usage: helptest [OPTIONS]

Options:
    --config     Some help text describing the --config arg
-h, --help       Print help information
-V, --version    Print version information
fn long_help<impl IntoResettable<StyledStr>: IntoResettable<StyledStr>>(self: Self, h: impl IntoResettable<StyledStr>) -> Self

Sets the description of the argument for long help (--help).

Typically this a more detailed (multi-line) message that describes the arg.

If Arg::help is not specified, this message will be displayed for -h.

NOTE: Only Arg::help is used in completion script generation in order to be concise

Examples

Any valid UTF-8 is allowed in the help text. The one exception is when one wishes to include a newline in the help text and have the following text be properly aligned with all the other help text.

Setting help displays a short message to the side of the argument when the user passes -h or --help (by default).

# #[cfg(feature = "help")] {
# use clap_builder as clap;
# use clap::{Command, Arg};
let m = Command::new("prog")
    .arg(Arg::new("cfg")
        .long("config")
        .long_help(
"The config file used by the myprog must be in JSON format
with only valid keys and may not contain other nonsense
that cannot be read by this program. Obviously I'm going on
and on, so I'll stop now."))
    .get_matches_from(vec![
        "prog", "--help"
    ]);
# }

The above example displays

prog

Usage: prog [OPTIONS]

Options:
        --config
            The config file used by the myprog must be in JSON format
            with only valid keys and may not contain other nonsense
            that cannot be read by this program. Obviously I'm going on
            and on, so I'll stop now.

    -h, --help
            Print help information

    -V, --version
            Print version information
fn display_order<impl IntoResettable<usize>: IntoResettable<usize>>(self: Self, ord: impl IntoResettable<usize>) -> Self

Allows custom ordering of args within the help message.

Args with a lower value will be displayed first in the help message. Those with the same display order will be sorted.

Args are automatically assigned a display order based on the order they are added to the [Command][crate::Command]. Overriding this is helpful when the order arguments are added in isn't the same as the display order, whether in one-off cases or to automatically sort arguments.

To change, see [Command::next_display_order][crate::Command::next_display_order].

NOTE: This setting is ignored for positional arguments which are always displayed in index order.

Examples

# #[cfg(feature = "help")] {
# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let m = Command::new("prog")
    .arg(Arg::new("boat")
        .short('b')
        .long("boat")
        .action(ArgAction::Set)
        .display_order(0)  // Sort
        .help("Some help and text"))
    .arg(Arg::new("airplane")
        .short('a')
        .long("airplane")
        .action(ArgAction::Set)
        .display_order(0)  // Sort
        .help("I should be first!"))
    .arg(Arg::new("custom-help")
        .short('?')
        .action(ArgAction::Help)
        .display_order(100)  // Don't sort
        .help("Alt help"))
    .get_matches_from(vec![
        "prog", "--help"
    ]);
# }

The above example displays the following help message

cust-ord

Usage: cust-ord [OPTIONS]

Options:
    -a, --airplane <airplane>    I should be first!
    -b, --boat <boar>            Some help and text
    -h, --help                   Print help information
    -?                           Alt help
fn help_heading<impl IntoResettable<Str>: IntoResettable<Str>>(self: Self, heading: impl IntoResettable<Str>) -> Self

Override the current help section.

fn next_line_help(self: Self, yes: bool) -> Self

Render the [help][Arg::help] on the line after the argument.

This can be helpful for arguments with very long or complex help messages. This can also be helpful for arguments with very long flag names, or many/long value names.

NOTE: To apply this setting to all arguments and subcommands, consider using crate::Command::next_line_help

Examples

# #[cfg(feature = "help")] {
# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let m = Command::new("prog")
    .arg(Arg::new("opt")
        .long("long-option-flag")
        .short('o')
        .action(ArgAction::Set)
        .next_line_help(true)
        .value_names(["value1", "value2"])
        .help("Some really long help and complex\n\
               help that makes more sense to be\n\
               on a line after the option"))
    .get_matches_from(vec![
        "prog", "--help"
    ]);
# }

The above example displays the following help message

nlh

Usage: nlh [OPTIONS]

Options:
    -h, --help       Print help information
    -V, --version    Print version information
    -o, --long-option-flag <value1> <value2>
        Some really long help and complex
        help that makes more sense to be
        on a line after the option
fn hide(self: Self, yes: bool) -> Self

Do not display the argument in help message.

NOTE: This does not hide the argument from usage strings on error

Examples

Setting Hidden will hide the argument when displaying help text

# #[cfg(feature = "help")] {
# use clap_builder as clap;
# use clap::{Command, Arg};
let m = Command::new("prog")
    .arg(Arg::new("cfg")
        .long("config")
        .hide(true)
        .help("Some help text describing the --config arg"))
    .get_matches_from(vec![
        "prog", "--help"
    ]);
# }

The above example displays

helptest

Usage: helptest [OPTIONS]

Options:
-h, --help       Print help information
-V, --version    Print version information
fn hide_possible_values(self: Self, yes: bool) -> Self

Do not display the [possible values][crate::builder::ValueParser::possible_values] in the help message.

This is useful for args with many values, or ones which are explained elsewhere in the help text.

To set this for all arguments, see [Command::hide_possible_values][crate::Command::hide_possible_values].

NOTE: Setting this requires [taking values][Arg::num_args]

Examples

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let m = Command::new("prog")
    .arg(Arg::new("mode")
        .long("mode")
        .value_parser(["fast", "slow"])
        .action(ArgAction::Set)
        .hide_possible_values(true));

If we were to run the above program with --help the [values: fast, slow] portion of the help text would be omitted.

fn hide_default_value(self: Self, yes: bool) -> Self

Do not display the default value of the argument in the help message.

This is useful when default behavior of an arg is explained elsewhere in the help text.

NOTE: Setting this requires [taking values][Arg::num_args]

Examples

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let m = Command::new("connect")
    .arg(Arg::new("host")
        .long("host")
        .default_value("localhost")
        .action(ArgAction::Set)
        .hide_default_value(true));

If we were to run the above program with --help the [default: localhost] portion of the help text would be omitted.

fn hide_short_help(self: Self, yes: bool) -> Self

Hides an argument from short help (-h).

NOTE: This does not hide the argument from usage strings on error

NOTE: Setting this option will cause next-line-help output style to be used when long help (--help) is called.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg};
Arg::new("debug")
    .hide_short_help(true);

Setting hide_short_help(true) will hide the argument when displaying short help text

# #[cfg(feature = "help")] {
# use clap_builder as clap;
# use clap::{Command, Arg};
let m = Command::new("prog")
    .arg(Arg::new("cfg")
        .long("config")
        .hide_short_help(true)
        .help("Some help text describing the --config arg"))
    .get_matches_from(vec![
        "prog", "-h"
    ]);
# }

The above example displays

helptest

Usage: helptest [OPTIONS]

Options:
-h, --help       Print help information
-V, --version    Print version information

However, when --help is called

# #[cfg(feature = "help")] {
# use clap_builder as clap;
# use clap::{Command, Arg};
let m = Command::new("prog")
    .arg(Arg::new("cfg")
        .long("config")
        .hide_short_help(true)
        .help("Some help text describing the --config arg"))
    .get_matches_from(vec![
        "prog", "--help"
    ]);
# }

Then the following would be displayed

helptest

Usage: helptest [OPTIONS]

Options:
    --config     Some help text describing the --config arg
-h, --help       Print help information
-V, --version    Print version information
fn hide_long_help(self: Self, yes: bool) -> Self

Hides an argument from long help (--help).

NOTE: This does not hide the argument from usage strings on error

NOTE: Setting this option will cause next-line-help output style to be used when long help (--help) is called.

Examples

Setting hide_long_help(true) will hide the argument when displaying long help text

# #[cfg(feature = "help")] {
# use clap_builder as clap;
# use clap::{Command, Arg};
let m = Command::new("prog")
    .arg(Arg::new("cfg")
        .long("config")
        .hide_long_help(true)
        .help("Some help text describing the --config arg"))
    .get_matches_from(vec![
        "prog", "--help"
    ]);
# }

The above example displays

helptest

Usage: helptest [OPTIONS]

Options:
-h, --help       Print help information
-V, --version    Print version information

However, when -h is called

# #[cfg(feature = "help")] {
# use clap_builder as clap;
# use clap::{Command, Arg};
let m = Command::new("prog")
    .arg(Arg::new("cfg")
        .long("config")
        .hide_long_help(true)
        .help("Some help text describing the --config arg"))
    .get_matches_from(vec![
        "prog", "-h"
    ]);
# }

Then the following would be displayed

helptest

Usage: helptest [OPTIONS]

OPTIONS:
    --config     Some help text describing the --config arg
-h, --help       Print help information
-V, --version    Print version information

impl Arg

fn new<impl Into<Id>: Into<Id>>(id: impl Into<Id>) -> Self

Create a new Arg with a unique name.

The name is used to check whether or not the argument was used at runtime, get values, set relationships with other args, etc..

NOTE: In the case of arguments that take values (i.e. Arg::action(ArgAction::Set)) and positional arguments (i.e. those without a preceding - or --) the name will also be displayed when the user prints the usage/help information of the program.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg};
Arg::new("config")
# ;
fn id<impl Into<Id>: Into<Id>>(self: Self, id: impl Into<Id>) -> Self

Set the identifier used for referencing this argument in the clap API.

See Arg::new for more details.

fn short<impl IntoResettable<char>: IntoResettable<char>>(self: Self, s: impl IntoResettable<char>) -> Self

Sets the short version of the argument without the preceding -.

By default V and h are used by the auto-generated version and help arguments, respectively. You will need to disable the auto-generated flags ([disable_help_flag][crate::Command::disable_help_flag], [disable_version_flag][crate::Command::disable_version_flag]) and define your own.

Examples

When calling short, use a single valid UTF-8 character which will allow using the argument via a single hyphen (-) such as -c:

# use clap_builder as clap;
# use clap::{Command, Arg,  ArgAction};
let m = Command::new("prog")
    .arg(Arg::new("config")
        .short('c')
        .action(ArgAction::Set))
    .get_matches_from(vec![
        "prog", "-c", "file.toml"
    ]);

assert_eq!(m.get_one::<String>("config").map(String::as_str), Some("file.toml"));

To use -h for your own flag and still have help:

# use clap_builder as clap;
# use clap::{Command, Arg,  ArgAction};
let m = Command::new("prog")
    .disable_help_flag(true)
    .arg(Arg::new("host")
        .short('h')
        .long("host"))
    .arg(Arg::new("help")
        .long("help")
        .global(true)
        .action(ArgAction::Help))
    .get_matches_from(vec![
        "prog", "-h", "wikipedia.org"
    ]);

assert_eq!(m.get_one::<String>("host").map(String::as_str), Some("wikipedia.org"));
fn long<impl IntoResettable<Str>: IntoResettable<Str>>(self: Self, l: impl IntoResettable<Str>) -> Self

Sets the long version of the argument without the preceding --.

By default version and help are used by the auto-generated version and help arguments, respectively. You may use the word version or help for the long form of your own arguments, in which case clap simply will not assign those to the auto-generated version or help arguments.

NOTE: Any leading - characters will be stripped

Examples

To set long use a word containing valid UTF-8. If you supply a double leading -- such as --config they will be stripped. Hyphens in the middle of the word, however, will not be stripped (i.e. config-file is allowed).

Setting long allows using the argument via a double hyphen (--) such as --config

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let m = Command::new("prog")
    .arg(Arg::new("cfg")
        .long("config")
        .action(ArgAction::Set))
    .get_matches_from(vec![
        "prog", "--config", "file.toml"
    ]);

assert_eq!(m.get_one::<String>("cfg").map(String::as_str), Some("file.toml"));
fn alias<impl IntoResettable<Str>: IntoResettable<Str>>(self: Self, name: impl IntoResettable<Str>) -> Self

Add an alias, which functions as a hidden long flag.

This is more efficient, and easier than creating multiple hidden arguments as one only needs to check for the existence of this command, and not all variants.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let m = Command::new("prog")
            .arg(Arg::new("test")
            .long("test")
            .alias("alias")
            .action(ArgAction::Set))
       .get_matches_from(vec![
            "prog", "--alias", "cool"
        ]);
assert_eq!(m.get_one::<String>("test").unwrap(), "cool");
fn short_alias<impl IntoResettable<char>: IntoResettable<char>>(self: Self, name: impl IntoResettable<char>) -> Self

Add an alias, which functions as a hidden short flag.

This is more efficient, and easier than creating multiple hidden arguments as one only needs to check for the existence of this command, and not all variants.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let m = Command::new("prog")
            .arg(Arg::new("test")
            .short('t')
            .short_alias('e')
            .action(ArgAction::Set))
       .get_matches_from(vec![
            "prog", "-e", "cool"
        ]);
assert_eq!(m.get_one::<String>("test").unwrap(), "cool");
fn aliases<impl Into<Str>: Into<Str>, impl IntoIterator<Item = impl Into<Str>>: IntoIterator<Item = impl Into<Str>>>(self: Self, names: impl IntoIterator<Item = impl Into<Str>>) -> Self

Add aliases, which function as hidden long flags.

This is more efficient, and easier than creating multiple hidden subcommands as one only needs to check for the existence of this command, and not all variants.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let m = Command::new("prog")
            .arg(Arg::new("test")
                    .long("test")
                    .aliases(["do-stuff", "do-tests", "tests"])
                    .action(ArgAction::SetTrue)
                    .help("the file to add")
                    .required(false))
            .get_matches_from(vec![
                "prog", "--do-tests"
            ]);
assert_eq!(m.get_flag("test"), true);
fn short_aliases<impl IntoIterator<Item = char>: IntoIterator<Item = char>>(self: Self, names: impl IntoIterator<Item = char>) -> Self

Add aliases, which functions as a hidden short flag.

This is more efficient, and easier than creating multiple hidden subcommands as one only needs to check for the existence of this command, and not all variants.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let m = Command::new("prog")
            .arg(Arg::new("test")
                    .short('t')
                    .short_aliases(['e', 's'])
                    .action(ArgAction::SetTrue)
                    .help("the file to add")
                    .required(false))
            .get_matches_from(vec![
                "prog", "-s"
            ]);
assert_eq!(m.get_flag("test"), true);
fn visible_alias<impl IntoResettable<Str>: IntoResettable<Str>>(self: Self, name: impl IntoResettable<Str>) -> Self

Add an alias, which functions as a visible long flag.

Like Arg::alias, except that they are visible inside the help message.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let m = Command::new("prog")
            .arg(Arg::new("test")
                .visible_alias("something-awesome")
                .long("test")
                .action(ArgAction::Set))
       .get_matches_from(vec![
            "prog", "--something-awesome", "coffee"
        ]);
assert_eq!(m.get_one::<String>("test").unwrap(), "coffee");
fn visible_short_alias<impl IntoResettable<char>: IntoResettable<char>>(self: Self, name: impl IntoResettable<char>) -> Self

Add an alias, which functions as a visible short flag.

Like Arg::short_alias, except that they are visible inside the help message.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let m = Command::new("prog")
            .arg(Arg::new("test")
                .long("test")
                .visible_short_alias('t')
                .action(ArgAction::Set))
       .get_matches_from(vec![
            "prog", "-t", "coffee"
        ]);
assert_eq!(m.get_one::<String>("test").unwrap(), "coffee");
fn visible_aliases<impl Into<Str>: Into<Str>, impl IntoIterator<Item = impl Into<Str>>: IntoIterator<Item = impl Into<Str>>>(self: Self, names: impl IntoIterator<Item = impl Into<Str>>) -> Self

Add aliases, which function as visible long flags.

Like Arg::aliases, except that they are visible inside the help message.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let m = Command::new("prog")
            .arg(Arg::new("test")
                .long("test")
                .action(ArgAction::SetTrue)
                .visible_aliases(["something", "awesome", "cool"]))
       .get_matches_from(vec![
            "prog", "--awesome"
        ]);
assert_eq!(m.get_flag("test"), true);
fn visible_short_aliases<impl IntoIterator<Item = char>: IntoIterator<Item = char>>(self: Self, names: impl IntoIterator<Item = char>) -> Self

Add aliases, which function as visible short flags.

Like Arg::short_aliases, except that they are visible inside the help message.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let m = Command::new("prog")
            .arg(Arg::new("test")
                .long("test")
                .action(ArgAction::SetTrue)
                .visible_short_aliases(['t', 'e']))
       .get_matches_from(vec![
            "prog", "-t"
        ]);
assert_eq!(m.get_flag("test"), true);
fn index<impl IntoResettable<usize>: IntoResettable<usize>>(self: Self, idx: impl IntoResettable<usize>) -> Self

Specifies the index of a positional argument starting at 1.

NOTE: The index refers to position according to other positional argument. It does not define position in the argument list as a whole.

NOTE: You can optionally leave off the index method, and the index will be assigned in order of evaluation. Utilizing the index method allows for setting indexes out of order

NOTE: This is only meant to be used for positional arguments and shouldn't to be used with Arg::short or Arg::long.

NOTE: When utilized with [Arg::num_args(1..)], only the last positional argument may be defined as having a variable number of arguments (i.e. with the highest index)

Panics

Command will [panic!] if indexes are skipped (such as defining index(1) and index(3) but not index(2), or a positional argument is defined as multiple and is not the highest index (debug builds)

Examples

# use clap_builder as clap;
# use clap::{Command, Arg};
Arg::new("config")
    .index(1)
# ;
# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let m = Command::new("prog")
    .arg(Arg::new("mode")
        .index(1))
    .arg(Arg::new("debug")
        .long("debug")
        .action(ArgAction::SetTrue))
    .get_matches_from(vec![
        "prog", "--debug", "fast"
    ]);

assert!(m.contains_id("mode"));
assert_eq!(m.get_one::<String>("mode").unwrap(), "fast"); // notice index(1) means "first positional"
                                                          // *not* first argument
fn trailing_var_arg(self: Self, yes: bool) -> Self

This is a "var arg" and everything that follows should be captured by it, as if the user had used a --.

NOTE: To start the trailing "var arg" on unknown flags (and not just a positional value), set [allow_hyphen_values][Arg::allow_hyphen_values]. Either way, users still have the option to explicitly escape ambiguous arguments with --.

NOTE: Arg::value_delimiter still applies if set.

NOTE: Setting this requires Arg::num_args(..).

Examples

# use clap_builder as clap;
# use clap::{Command, arg};
let m = Command::new("myprog")
    .arg(arg!(<cmd> ... "commands to run").trailing_var_arg(true))
    .get_matches_from(vec!["myprog", "arg1", "-r", "val1"]);

let trail: Vec<_> = m.get_many::<String>("cmd").unwrap().collect();
assert_eq!(trail, ["arg1", "-r", "val1"]);
fn last(self: Self, yes: bool) -> Self

This arg is the last, or final, positional argument (i.e. has the highest index) and is only able to be accessed via the -- syntax (i.e. $ prog args -- last_arg).

Even, if no other arguments are left to parse, if the user omits the -- syntax they will receive an UnknownArgument error. Setting an argument to .last(true) also allows one to access this arg early using the -- syntax. Accessing an arg early, even with the -- syntax is otherwise not possible.

NOTE: This will change the usage string to look like $ prog [OPTIONS] [-- <ARG>] if ARG is marked as .last(true).

NOTE: This setting will imply crate::Command::dont_collapse_args_in_usage because failing to set this can make the usage string very confusing.

NOTE: This setting only applies to positional arguments, and has no effect on OPTIONS

NOTE: Setting this requires [taking values][Arg::num_args]

WARNING: Using this setting and having child subcommands is not recommended with the exception of also using crate::Command::args_conflicts_with_subcommands (or crate::Command::subcommand_negates_reqs if the argument marked Last is also marked Arg::required)

Examples

# use clap_builder as clap;
# use clap::{Arg, ArgAction};
Arg::new("args")
    .action(ArgAction::Set)
    .last(true)
# ;

Setting last ensures the arg has the highest index of all positional args and requires that the -- syntax be used to access it early.

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let res = Command::new("prog")
    .arg(Arg::new("first"))
    .arg(Arg::new("second"))
    .arg(Arg::new("third")
        .action(ArgAction::Set)
        .last(true))
    .try_get_matches_from(vec![
        "prog", "one", "--", "three"
    ]);

assert!(res.is_ok());
let m = res.unwrap();
assert_eq!(m.get_one::<String>("third").unwrap(), "three");
assert_eq!(m.get_one::<String>("second"), None);

Even if the positional argument marked Last is the only argument left to parse, failing to use the -- syntax results in an error.

# use clap_builder as clap;
# use clap::{Command, Arg, error::ErrorKind, ArgAction};
let res = Command::new("prog")
    .arg(Arg::new("first"))
    .arg(Arg::new("second"))
    .arg(Arg::new("third")
        .action(ArgAction::Set)
        .last(true))
    .try_get_matches_from(vec![
        "prog", "one", "two", "three"
    ]);

assert!(res.is_err());
assert_eq!(res.unwrap_err().kind(), ErrorKind::UnknownArgument);
fn required(self: Self, yes: bool) -> Self

Specifies that the argument must be present.

Required by default means it is required, when no other conflicting rules or overrides have been evaluated. Conflicting rules take precedence over being required.

Pro tip: Flags (i.e. not positional, or arguments that take values) shouldn't be required by default. This is because if a flag were to be required, it should simply be implied. No additional information is required from user. Flags by their very nature are simply boolean on/off switches. The only time a user should be required to use a flag is if the operation is destructive in nature, and the user is essentially proving to you, "Yes, I know what I'm doing."

Examples

# use clap_builder as clap;
# use clap::Arg;
Arg::new("config")
    .required(true)
# ;

Setting required requires that the argument be used at runtime.

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let res = Command::new("prog")
    .arg(Arg::new("cfg")
        .required(true)
        .action(ArgAction::Set)
        .long("config"))
    .try_get_matches_from(vec![
        "prog", "--config", "file.conf",
    ]);

assert!(res.is_ok());

Setting required and then not supplying that argument at runtime is an error.

# use clap_builder as clap;
# use clap::{Command, Arg, error::ErrorKind, ArgAction};
let res = Command::new("prog")
    .arg(Arg::new("cfg")
        .required(true)
        .action(ArgAction::Set)
        .long("config"))
    .try_get_matches_from(vec![
        "prog"
    ]);

assert!(res.is_err());
assert_eq!(res.unwrap_err().kind(), ErrorKind::MissingRequiredArgument);
fn requires<impl IntoResettable<Id>: IntoResettable<Id>>(self: Self, arg_id: impl IntoResettable<Id>) -> Self

Sets an argument that is required when this one is present

i.e. when using this argument, the following argument must be present.

NOTE: Conflicting rules and override rules take precedence over being required

Examples

# use clap_builder as clap;
# use clap::Arg;
Arg::new("config")
    .requires("input")
# ;

Setting Arg::requires(name) requires that the argument be used at runtime if the defining argument is used. If the defining argument isn't used, the other argument isn't required

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let res = Command::new("prog")
    .arg(Arg::new("cfg")
        .action(ArgAction::Set)
        .requires("input")
        .long("config"))
    .arg(Arg::new("input"))
    .try_get_matches_from(vec![
        "prog"
    ]);

assert!(res.is_ok()); // We didn't use cfg, so input wasn't required

Setting Arg::requires(name) and not supplying that argument is an error.

# use clap_builder as clap;
# use clap::{Command, Arg, error::ErrorKind, ArgAction};
let res = Command::new("prog")
    .arg(Arg::new("cfg")
        .action(ArgAction::Set)
        .requires("input")
        .long("config"))
    .arg(Arg::new("input"))
    .try_get_matches_from(vec![
        "prog", "--config", "file.conf"
    ]);

assert!(res.is_err());
assert_eq!(res.unwrap_err().kind(), ErrorKind::MissingRequiredArgument);
fn exclusive(self: Self, yes: bool) -> Self

This argument must be passed alone; it conflicts with all other arguments.

Examples

# use clap_builder as clap;
# use clap::Arg;
Arg::new("config")
    .exclusive(true)
# ;

Setting an exclusive argument and having any other arguments present at runtime is an error.

# use clap_builder as clap;
# use clap::{Command, Arg, error::ErrorKind, ArgAction};
let res = Command::new("prog")
    .arg(Arg::new("exclusive")
        .action(ArgAction::Set)
        .exclusive(true)
        .long("exclusive"))
    .arg(Arg::new("debug")
        .long("debug"))
    .arg(Arg::new("input"))
    .try_get_matches_from(vec![
        "prog", "--exclusive", "file.conf", "file.txt"
    ]);

assert!(res.is_err());
assert_eq!(res.unwrap_err().kind(), ErrorKind::ArgumentConflict);
fn global(self: Self, yes: bool) -> Self

Specifies that an argument can be matched to all child Subcommands.

NOTE: Global arguments only propagate down, not up (to parent commands), however their values once a user uses them will be propagated back up to parents. In effect, this means one should define all global arguments at the top level, however it doesn't matter where the user uses the global argument.

Examples

Assume an application with two subcommands, and you'd like to define a --verbose flag that can be called on any of the subcommands and parent, but you don't want to clutter the source with three duplicate Arg definitions.

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let m = Command::new("prog")
    .arg(Arg::new("verb")
        .long("verbose")
        .short('v')
        .action(ArgAction::SetTrue)
        .global(true))
    .subcommand(Command::new("test"))
    .subcommand(Command::new("do-stuff"))
    .get_matches_from(vec![
        "prog", "do-stuff", "--verbose"
    ]);

assert_eq!(m.subcommand_name(), Some("do-stuff"));
let sub_m = m.subcommand_matches("do-stuff").unwrap();
assert_eq!(sub_m.get_flag("verb"), true);

impl Arg

fn action<impl IntoResettable<ArgAction>: IntoResettable<ArgAction>>(self: Self, action: impl IntoResettable<ArgAction>) -> Self

Specify how to react to an argument when parsing it.

ArgAction controls things like

  • Overwriting previous values with new ones
  • Appending new values to all previous ones
  • Counting how many times a flag occurs

The default action is ArgAction::Set

Examples

# use clap_builder as clap;
# use clap::Command;
# use clap::Arg;
let cmd = Command::new("mycmd")
    .arg(
        Arg::new("flag")
            .long("flag")
            .action(clap::ArgAction::Append)
    );

let matches = cmd.try_get_matches_from(["mycmd", "--flag", "value"]).unwrap();
assert!(matches.contains_id("flag"));
assert_eq!(
    matches.get_many::<String>("flag").unwrap_or_default().map(|v| v.as_str()).collect::<Vec<_>>(),
    vec!["value"]
);
fn value_parser<impl IntoResettable<super::ValueParser>: IntoResettable<super::ValueParser>>(self: Self, parser: impl IntoResettable<super::ValueParser>) -> Self

Specify the typed behavior of the argument.

This allows parsing and validating a value before storing it into [ArgMatches][crate::ArgMatches] as the given type.

Possible value parsers include:

  • [value_parser!(T)][crate::value_parser!] for auto-selecting a value parser for a given type
    • Or [range expressions like 0..=1][std::ops::RangeBounds] as a shorthand for [RangedI64ValueParser][crate::builder::RangedI64ValueParser]
  • Fn(&str) -> Result<T, E>
  • [&str] and [PossibleValuesParser][crate::builder::PossibleValuesParser] for static enumerated values
  • [BoolishValueParser][crate::builder::BoolishValueParser], and [FalseyValueParser][crate::builder::FalseyValueParser] for alternative bool implementations
  • [NonEmptyStringValueParser][crate::builder::NonEmptyStringValueParser] for basic validation for strings
  • or any other [TypedValueParser][crate::builder::TypedValueParser] implementation

The default value is [ValueParser::string][crate::builder::ValueParser::string].

# use clap_builder as clap;
# use clap::ArgAction;
let mut cmd = clap::Command::new("raw")
    .arg(
        clap::Arg::new("color")
            .long("color")
            .value_parser(["always", "auto", "never"])
            .default_value("auto")
    )
    .arg(
        clap::Arg::new("hostname")
            .long("hostname")
            .value_parser(clap::builder::NonEmptyStringValueParser::new())
            .action(ArgAction::Set)
            .required(true)
    )
    .arg(
        clap::Arg::new("port")
            .long("port")
            .value_parser(clap::value_parser!(u16).range(3000..))
            .action(ArgAction::Set)
            .required(true)
    );

let m = cmd.try_get_matches_from_mut(
    ["cmd", "--hostname", "rust-lang.org", "--port", "3001"]
).unwrap();

let color: &String = m.get_one("color")
    .expect("default");
assert_eq!(color, "auto");

let hostname: &String = m.get_one("hostname")
    .expect("required");
assert_eq!(hostname, "rust-lang.org");

let port: u16 = *m.get_one("port")
    .expect("required");
assert_eq!(port, 3001);
fn num_args<impl IntoResettable<ValueRange>: IntoResettable<ValueRange>>(self: Self, qty: impl IntoResettable<ValueRange>) -> Self

Specifies the number of arguments parsed per occurrence

For example, if you had a -f <file> argument where you wanted exactly 3 'files' you would set .num_args(3), and this argument wouldn't be satisfied unless the user provided 3 and only 3 values.

Users may specify values for arguments in any of the following methods

  • Using a space such as -o value or --option value
  • Using an equals and no space such as -o=value or --option=value
  • Use a short and no space such as -ovalue

WARNING:

Setting a variable number of values (e.g. 1..=10) for an argument without other details can be dangerous in some circumstances. Because multiple values are allowed, --option val1 val2 val3 is perfectly valid. Be careful when designing a CLI where positional arguments or subcommands are also expected as clap will continue parsing values until one of the following happens:

  • It reaches the maximum number of values
  • It reaches a specific number of values
  • It finds another flag or option (i.e. something that starts with a -)
  • It reaches the Arg::value_terminator if set

Alternatively,

Examples

Option:

# use clap_builder as clap;
# use clap::{Command, Arg};
let m = Command::new("prog")
    .arg(Arg::new("mode")
        .long("mode")
        .num_args(1))
    .get_matches_from(vec![
        "prog", "--mode", "fast"
    ]);

assert_eq!(m.get_one::<String>("mode").unwrap(), "fast");

Flag/option hybrid (see also [default_missing_value][Arg::default_missing_value])

# use clap_builder as clap;
# use clap::{Command, Arg, error::ErrorKind, ArgAction};
let cmd = Command::new("prog")
    .arg(Arg::new("mode")
        .long("mode")
        .default_missing_value("slow")
        .default_value("plaid")
        .num_args(0..=1));

let m = cmd.clone()
    .get_matches_from(vec![
        "prog", "--mode", "fast"
    ]);
assert_eq!(m.get_one::<String>("mode").unwrap(), "fast");

let m = cmd.clone()
    .get_matches_from(vec![
        "prog", "--mode",
    ]);
assert_eq!(m.get_one::<String>("mode").unwrap(), "slow");

let m = cmd.clone()
    .get_matches_from(vec![
        "prog",
    ]);
assert_eq!(m.get_one::<String>("mode").unwrap(), "plaid");

Tuples

# use clap_builder as clap;
# use clap::{Command, Arg, error::ErrorKind, ArgAction};
let cmd = Command::new("prog")
    .arg(Arg::new("file")
        .action(ArgAction::Set)
        .num_args(2)
        .short('F'));

let m = cmd.clone()
    .get_matches_from(vec![
        "prog", "-F", "in-file", "out-file"
    ]);
assert_eq!(
    m.get_many::<String>("file").unwrap_or_default().map(|v| v.as_str()).collect::<Vec<_>>(),
    vec!["in-file", "out-file"]
);

let res = cmd.clone()
    .try_get_matches_from(vec![
        "prog", "-F", "file1"
    ]);
assert_eq!(res.unwrap_err().kind(), ErrorKind::WrongNumberOfValues);

A common mistake is to define an option which allows multiple values and a positional argument.

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let cmd = Command::new("prog")
    .arg(Arg::new("file")
        .action(ArgAction::Set)
        .num_args(0..)
        .short('F'))
    .arg(Arg::new("word"));

let m = cmd.clone().get_matches_from(vec![
    "prog", "-F", "file1", "file2", "file3", "word"
]);
let files: Vec<_> = m.get_many::<String>("file").unwrap().collect();
assert_eq!(files, ["file1", "file2", "file3", "word"]); // wait...what?!
assert!(!m.contains_id("word")); // but we clearly used word!

// but this works
let m = cmd.clone().get_matches_from(vec![
    "prog", "word", "-F", "file1", "file2", "file3",
]);
let files: Vec<_> = m.get_many::<String>("file").unwrap().collect();
assert_eq!(files, ["file1", "file2", "file3"]);
assert_eq!(m.get_one::<String>("word").unwrap(), "word");

The problem is clap doesn't know when to stop parsing values for "file".

A solution for the example above is to limit how many values with a maximum, or specific number, or to say ArgAction::Append is ok, but multiple values are not.

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let m = Command::new("prog")
    .arg(Arg::new("file")
        .action(ArgAction::Append)
        .short('F'))
    .arg(Arg::new("word"))
    .get_matches_from(vec![
        "prog", "-F", "file1", "-F", "file2", "-F", "file3", "word"
    ]);

let files: Vec<_> = m.get_many::<String>("file").unwrap().collect();
assert_eq!(files, ["file1", "file2", "file3"]);
assert_eq!(m.get_one::<String>("word").unwrap(), "word");
fn value_name<impl IntoResettable<Str>: IntoResettable<Str>>(self: Self, name: impl IntoResettable<Str>) -> Self

Placeholder for the argument's value in the help message / usage.

This name is cosmetic only; the name is not used to access arguments. This setting can be very helpful when describing the type of input the user should be using, such as FILE, INTERFACE, etc. Although not required, it's somewhat convention to use all capital letters for the value name.

NOTE: implicitly sets Arg::action(ArgAction::Set)

Examples

# use clap_builder as clap;
# use clap::{Command, Arg};
Arg::new("cfg")
    .long("config")
    .value_name("FILE")
# ;
# use clap_builder as clap;
# #[cfg(feature = "help")] {
# use clap::{Command, Arg};
let m = Command::new("prog")
    .arg(Arg::new("config")
        .long("config")
        .value_name("FILE")
        .help("Some help text"))
    .get_matches_from(vec![
        "prog", "--help"
    ]);
# }

Running the above program produces the following output

valnames

Usage: valnames [OPTIONS]

Options:
    --config <FILE>     Some help text
    -h, --help          Print help information
    -V, --version       Print version information
fn value_names<impl Into<Str>: Into<Str>, impl IntoIterator<Item = impl Into<Str>>: IntoIterator<Item = impl Into<Str>>>(self: Self, names: impl IntoIterator<Item = impl Into<Str>>) -> Self

Placeholders for the argument's values in the help message / usage.

These names are cosmetic only, used for help and usage strings only. The names are not used to access arguments. The values of the arguments are accessed in numeric order (i.e. if you specify two names one and two one will be the first matched value, two will be the second).

This setting can be very helpful when describing the type of input the user should be using, such as FILE, INTERFACE, etc. Although not required, it's somewhat convention to use all capital letters for the value name.

TIP: It may help to use Arg::next_line_help(true) if there are long, or multiple value names in order to not throw off the help text alignment of all options.

NOTE: implicitly sets Arg::action(ArgAction::Set) and Arg::num_args(1..).

Examples

# use clap_builder as clap;
# use clap::{Command, Arg};
Arg::new("speed")
    .short('s')
    .value_names(["fast", "slow"]);
# use clap_builder as clap;
# #[cfg(feature = "help")] {
# use clap::{Command, Arg};
let m = Command::new("prog")
    .arg(Arg::new("io")
        .long("io-files")
        .value_names(["INFILE", "OUTFILE"]))
    .get_matches_from(vec![
        "prog", "--help"
    ]);
# }

Running the above program produces the following output

valnames

Usage: valnames [OPTIONS]

Options:
    -h, --help                       Print help information
    --io-files <INFILE> <OUTFILE>    Some help text
    -V, --version                    Print version information
fn value_hint<impl IntoResettable<ValueHint>: IntoResettable<ValueHint>>(self: Self, value_hint: impl IntoResettable<ValueHint>) -> Self

Provide the shell a hint about how to complete this argument.

See ValueHint for more information.

NOTE: implicitly sets [Arg::action(ArgAction::Set)].

For example, to take a username as argument:

# use clap_builder as clap;
# use clap::{Arg, ValueHint};
Arg::new("user")
    .short('u')
    .long("user")
    .value_hint(ValueHint::Username);

To take a full command line and its arguments (for example, when writing a command wrapper):

# use clap_builder as clap;
# use clap::{Command, Arg, ValueHint, ArgAction};
Command::new("prog")
    .trailing_var_arg(true)
    .arg(
        Arg::new("command")
            .action(ArgAction::Set)
            .num_args(1..)
            .value_hint(ValueHint::CommandWithArguments)
    );
fn ignore_case(self: Self, yes: bool) -> Self

Match values against [PossibleValuesParser][crate::builder::PossibleValuesParser] without matching case.

When other arguments are conditionally required based on the value of a case-insensitive argument, the equality check done by Arg::required_if_eq, Arg::required_if_eq_any, or Arg::required_if_eq_all is case-insensitive.

NOTE: Setting this requires [taking values][Arg::num_args]

NOTE: To do unicode case folding, enable the unicode feature flag.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let m = Command::new("pv")
    .arg(Arg::new("option")
        .long("option")
        .action(ArgAction::Set)
        .ignore_case(true)
        .value_parser(["test123"]))
    .get_matches_from(vec![
        "pv", "--option", "TeSt123",
    ]);

assert!(m.get_one::<String>("option").unwrap().eq_ignore_ascii_case("test123"));

This setting also works when multiple values can be defined:

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let m = Command::new("pv")
    .arg(Arg::new("option")
        .short('o')
        .long("option")
        .action(ArgAction::Set)
        .ignore_case(true)
        .num_args(1..)
        .value_parser(["test123", "test321"]))
    .get_matches_from(vec![
        "pv", "--option", "TeSt123", "teST123", "tESt321"
    ]);

let matched_vals = m.get_many::<String>("option").unwrap().collect::<Vec<_>>();
assert_eq!(&*matched_vals, &["TeSt123", "teST123", "tESt321"]);
fn allow_hyphen_values(self: Self, yes: bool) -> Self

Allows values which start with a leading hyphen (-)

To limit values to just numbers, see [allow_negative_numbers][Arg::allow_negative_numbers].

See also [trailing_var_arg][Arg::trailing_var_arg].

NOTE: Setting this requires [taking values][Arg::num_args]

WARNING: Prior arguments with allow_hyphen_values(true) get precedence over known flags but known flags get precedence over the next possible positional argument with allow_hyphen_values(true). When combined with [Arg::num_args(..)], Arg::value_terminator is one way to ensure processing stops.

WARNING: Take caution when using this setting combined with another argument using Arg::num_args, as this becomes ambiguous $ prog --arg -- -- val. All three --, --, val will be values when the user may have thought the second -- would constitute the normal, "Only positional args follow" idiom.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let m = Command::new("prog")
    .arg(Arg::new("pat")
        .action(ArgAction::Set)
        .allow_hyphen_values(true)
        .long("pattern"))
    .get_matches_from(vec![
        "prog", "--pattern", "-file"
    ]);

assert_eq!(m.get_one::<String>("pat").unwrap(), "-file");

Not setting Arg::allow_hyphen_values(true) and supplying a value which starts with a hyphen is an error.

# use clap_builder as clap;
# use clap::{Command, Arg, error::ErrorKind, ArgAction};
let res = Command::new("prog")
    .arg(Arg::new("pat")
        .action(ArgAction::Set)
        .long("pattern"))
    .try_get_matches_from(vec![
        "prog", "--pattern", "-file"
    ]);

assert!(res.is_err());
assert_eq!(res.unwrap_err().kind(), ErrorKind::UnknownArgument);
fn allow_negative_numbers(self: Self, yes: bool) -> Self

Allows negative numbers to pass as values.

This is similar to Arg::allow_hyphen_values except that it only allows numbers, all other undefined leading hyphens will fail to parse.

NOTE: Setting this requires [taking values][Arg::num_args]

Examples

# use clap_builder as clap;
# use clap::{Command, Arg};
let res = Command::new("myprog")
    .arg(Arg::new("num").allow_negative_numbers(true))
    .try_get_matches_from(vec![
        "myprog", "-20"
    ]);
assert!(res.is_ok());
let m = res.unwrap();
assert_eq!(m.get_one::<String>("num").unwrap(), "-20");
fn require_equals(self: Self, yes: bool) -> Self

Requires that options use the --option=val syntax

i.e. an equals between the option and associated value.

NOTE: Setting this requires [taking values][Arg::num_args]

Examples

Setting require_equals requires that the option have an equals sign between it and the associated value.

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let res = Command::new("prog")
    .arg(Arg::new("cfg")
        .action(ArgAction::Set)
        .require_equals(true)
        .long("config"))
    .try_get_matches_from(vec![
        "prog", "--config=file.conf"
    ]);

assert!(res.is_ok());

Setting require_equals and not supplying the equals will cause an error.

# use clap_builder as clap;
# use clap::{Command, Arg, error::ErrorKind, ArgAction};
let res = Command::new("prog")
    .arg(Arg::new("cfg")
        .action(ArgAction::Set)
        .require_equals(true)
        .long("config"))
    .try_get_matches_from(vec![
        "prog", "--config", "file.conf"
    ]);

assert!(res.is_err());
assert_eq!(res.unwrap_err().kind(), ErrorKind::NoEquals);
fn value_delimiter<impl IntoResettable<char>: IntoResettable<char>>(self: Self, d: impl IntoResettable<char>) -> Self

Allow grouping of multiple values via a delimiter.

i.e. allow values (val1,val2,val3) to be parsed as three values (val1, val2, and val3) instead of one value (val1,val2,val3).

Examples

# use clap_builder as clap;
# use clap::{Command, Arg};
let m = Command::new("prog")
    .arg(Arg::new("config")
        .short('c')
        .long("config")
        .value_delimiter(','))
    .get_matches_from(vec![
        "prog", "--config=val1,val2,val3"
    ]);

assert_eq!(m.get_many::<String>("config").unwrap().collect::<Vec<_>>(), ["val1", "val2", "val3"])
fn value_terminator<impl IntoResettable<Str>: IntoResettable<Str>>(self: Self, term: impl IntoResettable<Str>) -> Self

Sentinel to stop parsing multiple values of a given argument.

By default when one sets num_args(1..) on an argument, clap will continue parsing values for that argument until it reaches another valid argument, or one of the other more specific settings for multiple values is used (such as num_args).

NOTE: This setting only applies to options and positional arguments

NOTE: When the terminator is passed in on the command line, it is not stored as one of the values

Examples

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
Arg::new("vals")
    .action(ArgAction::Set)
    .num_args(1..)
    .value_terminator(";")
# ;

The following example uses two arguments, a sequence of commands, and the location in which to perform them

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let m = Command::new("prog")
    .arg(Arg::new("cmds")
        .action(ArgAction::Set)
        .num_args(1..)
        .allow_hyphen_values(true)
        .value_terminator(";"))
    .arg(Arg::new("location"))
    .get_matches_from(vec![
        "prog", "find", "-type", "f", "-name", "special", ";", "/home/clap"
    ]);
let cmds: Vec<_> = m.get_many::<String>("cmds").unwrap().collect();
assert_eq!(&cmds, &["find", "-type", "f", "-name", "special"]);
assert_eq!(m.get_one::<String>("location").unwrap(), "/home/clap");
fn raw(self: Self, yes: bool) -> Self

Consume all following arguments.

Do not parse them individually, but rather pass them in entirety.

It is worth noting that setting this requires all values to come after a -- to indicate they should all be captured. For example:

--foo something -- -v -v -v -b -b -b --baz -q -u -x

Will result in everything after -- to be considered one raw argument. This behavior may not be exactly what you are expecting and using Arg::trailing_var_arg may be more appropriate.

Arg::allow_hyphen_values(true), and Arg::last(true) when set to true.

fn default_value<impl IntoResettable<OsStr>: IntoResettable<OsStr>>(self: Self, val: impl IntoResettable<OsStr>) -> Self

Value for the argument when not present.

Like with command-line values, this will be split by Arg::value_delimiter.

NOTE: If the user does not use this argument at runtime ArgMatches::contains_id will still return true. If you wish to determine whether the argument was used at runtime or not, consider [ArgMatches::value_source][crate::ArgMatches::value_source].

NOTE: This setting is perfectly compatible with Arg::default_value_if but slightly different. Arg::default_value only takes effect when the user has not provided this arg at runtime. Arg::default_value_if however only takes effect when the user has not provided a value at runtime and these other conditions are met as well. If you have set Arg::default_value and Arg::default_value_if, and the user did not provide this arg at runtime, nor were the conditions met for Arg::default_value_if, the Arg::default_value will be applied.

Examples

First we use the default value without providing any value at runtime.

# use clap_builder as clap;
# use clap::{Command, Arg, parser::ValueSource};
let m = Command::new("prog")
    .arg(Arg::new("opt")
        .long("myopt")
        .default_value("myval"))
    .get_matches_from(vec![
        "prog"
    ]);

assert_eq!(m.get_one::<String>("opt").unwrap(), "myval");
assert!(m.contains_id("opt"));
assert_eq!(m.value_source("opt"), Some(ValueSource::DefaultValue));

Next we provide a value at runtime to override the default.

# use clap_builder as clap;
# use clap::{Command, Arg, parser::ValueSource};
let m = Command::new("prog")
    .arg(Arg::new("opt")
        .long("myopt")
        .default_value("myval"))
    .get_matches_from(vec![
        "prog", "--myopt=non_default"
    ]);

assert_eq!(m.get_one::<String>("opt").unwrap(), "non_default");
assert!(m.contains_id("opt"));
assert_eq!(m.value_source("opt"), Some(ValueSource::CommandLine));
fn default_values<impl Into<OsStr>: Into<OsStr>, impl IntoIterator<Item = impl Into<OsStr>>: IntoIterator<Item = impl Into<OsStr>>>(self: Self, vals: impl IntoIterator<Item = impl Into<OsStr>>) -> Self

Value for the argument when not present.

See Arg::default_value.

fn default_missing_value<impl IntoResettable<OsStr>: IntoResettable<OsStr>>(self: Self, val: impl IntoResettable<OsStr>) -> Self

Value for the argument when the flag is present but no value is specified.

This configuration option is often used to give the user a shortcut and allow them to efficiently specify an option argument without requiring an explicitly value. The --color argument is a common example. By supplying a default, such as default_missing_value("always"), the user can quickly just add --color to the command line to produce the desired color output.

Like with command-line values, this will be split by Arg::value_delimiter.

NOTE: using this configuration option requires the use of the [.num_args(0..N)][Arg::num_args] and the [.require_equals(true)][Arg::require_equals] configuration option. These are required in order to unambiguously determine what, if any, value was supplied for the argument.

Examples

For POSIX style --color:

# use clap_builder as clap;
# use clap::{Command, Arg, parser::ValueSource};
fn cli() -> Command {
    Command::new("prog")
        .arg(Arg::new("color").long("color")
            .value_name("WHEN")
            .value_parser(["always", "auto", "never"])
            .default_value("auto")
            .num_args(0..=1)
            .require_equals(true)
            .default_missing_value("always")
            .help("Specify WHEN to colorize output.")
        )
}

// first, we'll provide no arguments
let m  = cli().get_matches_from(vec![
        "prog"
    ]);
assert_eq!(m.get_one::<String>("color").unwrap(), "auto");
assert_eq!(m.value_source("color"), Some(ValueSource::DefaultValue));

// next, we'll provide a runtime value to override the default (as usually done).
let m  = cli().get_matches_from(vec![
        "prog", "--color=never"
    ]);
assert_eq!(m.get_one::<String>("color").unwrap(), "never");
assert_eq!(m.value_source("color"), Some(ValueSource::CommandLine));

// finally, we will use the shortcut and only provide the argument without a value.
let m  = cli().get_matches_from(vec![
        "prog", "--color"
    ]);
assert_eq!(m.get_one::<String>("color").unwrap(), "always");
assert_eq!(m.value_source("color"), Some(ValueSource::CommandLine));

For bool literals:

# use clap_builder as clap;
# use clap::{Command, Arg, parser::ValueSource, value_parser};
fn cli() -> Command {
    Command::new("prog")
        .arg(Arg::new("create").long("create")
            .value_name("BOOL")
            .value_parser(value_parser!(bool))
            .num_args(0..=1)
            .require_equals(true)
            .default_missing_value("true")
        )
}

// first, we'll provide no arguments
let m  = cli().get_matches_from(vec![
        "prog"
    ]);
assert_eq!(m.get_one::<bool>("create").copied(), None);

// next, we'll provide a runtime value to override the default (as usually done).
let m  = cli().get_matches_from(vec![
        "prog", "--create=false"
    ]);
assert_eq!(m.get_one::<bool>("create").copied(), Some(false));
assert_eq!(m.value_source("create"), Some(ValueSource::CommandLine));

// finally, we will use the shortcut and only provide the argument without a value.
let m  = cli().get_matches_from(vec![
        "prog", "--create"
    ]);
assert_eq!(m.get_one::<bool>("create").copied(), Some(true));
assert_eq!(m.value_source("create"), Some(ValueSource::CommandLine));
fn default_missing_value_os<impl Into<OsStr>: Into<OsStr>>(self: Self, val: impl Into<OsStr>) -> Self

Value for the argument when the flag is present but no value is specified.

See Arg::default_missing_value.

fn default_missing_values<impl Into<OsStr>: Into<OsStr>, impl IntoIterator<Item = impl Into<OsStr>>: IntoIterator<Item = impl Into<OsStr>>>(self: Self, vals: impl IntoIterator<Item = impl Into<OsStr>>) -> Self

Value for the argument when the flag is present but no value is specified.

See Arg::default_missing_value.

fn default_missing_values_os<impl Into<OsStr>: Into<OsStr>, impl IntoIterator<Item = impl Into<OsStr>>: IntoIterator<Item = impl Into<OsStr>>>(self: Self, vals: impl IntoIterator<Item = impl Into<OsStr>>) -> Self

Value for the argument when the flag is present but no value is specified.

See Arg::default_missing_values.

impl Arg

fn get_id(self: &Self) -> &Id

Get the name of the argument

fn get_help(self: &Self) -> Option<&StyledStr>

Get the help specified for this argument, if any

fn get_long_help(self: &Self) -> Option<&StyledStr>

Get the long help specified for this argument, if any

Examples

# use clap_builder as clap;
# use clap::Arg;
let arg = Arg::new("foo").long_help("long help");
assert_eq!(Some("long help".to_owned()), arg.get_long_help().map(|s| s.to_string()));
fn get_display_order(self: &Self) -> usize

Get the placement within help

fn get_help_heading(self: &Self) -> Option<&str>

Get the help heading specified for this argument, if any

fn get_short(self: &Self) -> Option<char>

Get the short option name for this argument, if any

fn get_visible_short_aliases(self: &Self) -> Option<Vec<char>>

Get visible short aliases for this argument, if any

fn get_all_short_aliases(self: &Self) -> Option<Vec<char>>

Get all short aliases for this argument, if any, both visible and hidden.

fn get_short_and_visible_aliases(self: &Self) -> Option<Vec<char>>

Get the short option name and its visible aliases, if any

fn get_long(self: &Self) -> Option<&str>

Get the long option name for this argument, if any

fn get_visible_aliases(self: &Self) -> Option<Vec<&str>>

Get visible aliases for this argument, if any

fn get_all_aliases(self: &Self) -> Option<Vec<&str>>

Get all aliases for this argument, if any, both visible and hidden.

fn get_long_and_visible_aliases(self: &Self) -> Option<Vec<&str>>

Get the long option name and its visible aliases, if any

fn get_aliases(self: &Self) -> Option<Vec<&str>>

Get hidden aliases for this argument, if any

fn get_possible_values(self: &Self) -> Vec<PossibleValue>

Get the names of possible values for this argument. Only useful for user facing applications, such as building help messages or man files

fn get_value_names(self: &Self) -> Option<&[Str]>

Get the names of values for this argument.

fn get_num_args(self: &Self) -> Option<ValueRange>

Get the number of values for this argument.

fn get_value_delimiter(self: &Self) -> Option<char>

Get the delimiter between multiple values

fn get_value_terminator(self: &Self) -> Option<&Str>

Get the value terminator for this argument. The value_terminator is a value that terminates parsing of multi-valued arguments.

fn get_index(self: &Self) -> Option<usize>

Get the index of this argument, if any

fn get_value_hint(self: &Self) -> ValueHint

Get the value hint of this argument

fn get_default_values(self: &Self) -> &[OsStr]

Get the default values specified for this argument, if any

Examples

# use clap_builder as clap;
# use clap::Arg;
let arg = Arg::new("foo").default_value("default value");
assert_eq!(arg.get_default_values(), &["default value"]);
fn is_positional(self: &Self) -> bool

Checks whether this argument is a positional or not.

Examples

# use clap_builder as clap;
# use clap::Arg;
let arg = Arg::new("foo");
assert_eq!(arg.is_positional(), true);

let arg = Arg::new("foo").long("foo");
assert_eq!(arg.is_positional(), false);
fn is_required_set(self: &Self) -> bool

Reports whether Arg::required is set

fn is_allow_hyphen_values_set(self: &Self) -> bool

Report whether Arg::allow_hyphen_values is set

fn is_allow_negative_numbers_set(self: &Self) -> bool

Report whether Arg::allow_negative_numbers is set

fn get_action(self: &Self) -> &ArgAction

Behavior when parsing the argument

fn get_value_parser(self: &Self) -> &super::ValueParser

Configured parser for argument values

Example

# use clap_builder as clap;
let cmd = clap::Command::new("raw")
    .arg(
        clap::Arg::new("port")
            .value_parser(clap::value_parser!(usize))
    );
let value_parser = cmd.get_arguments()
    .find(|a| a.get_id() == "port").unwrap()
    .get_value_parser();
println!("{value_parser:?}");
fn is_global_set(self: &Self) -> bool

Report whether Arg::global is set

fn is_next_line_help_set(self: &Self) -> bool

Report whether Arg::next_line_help is set

fn is_hide_set(self: &Self) -> bool

Report whether Arg::hide is set

fn is_hide_default_value_set(self: &Self) -> bool

Report whether Arg::hide_default_value is set

fn is_hide_possible_values_set(self: &Self) -> bool

Report whether Arg::hide_possible_values is set

fn is_hide_short_help_set(self: &Self) -> bool

Report whether Arg::hide_short_help is set

fn is_hide_long_help_set(self: &Self) -> bool

Report whether Arg::hide_long_help is set

fn is_require_equals_set(self: &Self) -> bool

Report whether Arg::require_equals is set

fn is_exclusive_set(self: &Self) -> bool

Reports whether Arg::exclusive is set

fn is_trailing_var_arg_set(self: &Self) -> bool

Report whether Arg::trailing_var_arg is set

fn is_last_set(self: &Self) -> bool

Reports whether Arg::last is set

fn is_ignore_case_set(self: &Self) -> bool

Reports whether Arg::ignore_case is set

impl Clone for Arg

fn clone(self: &Self) -> Arg

impl Debug for Arg

fn fmt(self: &Self, f: &mut Formatter<'_>) -> Result<(), fmt::Error>

impl Default for Arg

fn default() -> Arg

impl Display for Arg

fn fmt(self: &Self, f: &mut Formatter<'_>) -> fmt::Result

impl Eq for Arg

impl Freeze for Arg

impl From for Arg

fn from(a: &Arg) -> Self

impl Ord for Arg

fn cmp(self: &Self, other: &Arg) -> Ordering

impl PartialEq for Arg

fn eq(self: &Self, other: &Arg) -> bool

impl PartialOrd for Arg

fn partial_cmp(self: &Self, other: &Self) -> Option<Ordering>

impl RefUnwindSafe for Arg

impl Send for Arg

impl Sync for Arg

impl Unpin for Arg

impl UnwindSafe for Arg

impl<T> Any for Arg

fn type_id(self: &Self) -> TypeId

impl<T> Borrow for Arg

fn borrow(self: &Self) -> &T

impl<T> BorrowMut for Arg

fn borrow_mut(self: &mut Self) -> &mut T

impl<T> CloneToUninit for Arg

unsafe fn clone_to_uninit(self: &Self, dest: *mut u8)

impl<T> From for Arg

fn from(t: T) -> T

Returns the argument unchanged.

impl<T> ToOwned for Arg

fn to_owned(self: &Self) -> T
fn clone_into(self: &Self, target: &mut T)

impl<T> ToString for Arg

fn to_string(self: &Self) -> String

impl<T, U> Into for Arg

fn into(self: Self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of [From]<T> for U chooses to do.

impl<T, U> TryFrom for Arg

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

impl<T, U> TryInto for Arg

fn try_into(self: Self) -> Result<U, <U as TryFrom<T>>::Error>