Struct Command

struct Command { ... }

Build a command-line interface.

This includes defining arguments, subcommands, parser behavior, and help output. Once all configuration is complete, the Command::get_matches family of methods starts the runtime-parsing process. These methods then return information about the user supplied arguments (or lack thereof).

When deriving a [Parser][crate::Parser], you can use [CommandFactory::command][crate::CommandFactory::command] to access the Command.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg};
let m = Command::new("My Program")
    .author("Me, me@mail.com")
    .version("1.0.2")
    .about("Explains in brief what the program does")
    .arg(
        Arg::new("in_file")
    )
    .after_help("Longer explanation to appear after the options when \
                 displaying the help information from --help or -h")
    .get_matches();

// Your program logic starts here...

Implementations

impl Command

fn new<impl Into<Str>: Into<Str>>(name: impl Into<Str>) -> Self

Creates a new instance of an Command.

It is common, but not required, to use binary name as the name. This name will only be displayed to the user when they request to print version or help and usage information.

See also command! and crate_name!.

Examples

# use clap_builder as clap;
# use clap::Command;
Command::new("My Program")
# ;
fn arg<impl Into<Arg>: Into<Arg>>(self: Self, a: impl Into<Arg>) -> Self

Adds an argument to the list of valid possibilities.

Examples

# use clap_builder as clap;
# use clap::{Command, arg, Arg};
Command::new("myprog")
    // Adding a single "flag" argument with a short and help text, using Arg::new()
    .arg(
        Arg::new("debug")
           .short('d')
           .help("turns on debugging mode")
    )
    // Adding a single "option" argument with a short, a long, and help text using the less
    // verbose Arg::from()
    .arg(
        arg!(-c --config <CONFIG> "Optionally sets a config file to use")
    )
# ;
fn args<impl Into<Arg>: Into<Arg>, impl IntoIterator<Item = impl Into<Arg>>: IntoIterator<Item = impl Into<Arg>>>(self: Self, args: impl IntoIterator<Item = impl Into<Arg>>) -> Self

Adds multiple arguments to the list of valid possibilities.

Examples

# use clap_builder as clap;
# use clap::{Command, arg, Arg};
Command::new("myprog")
    .args([
        arg!(-d --debug "turns on debugging info"),
        Arg::new("input").help("the input file to use")
    ])
# ;
fn mut_arg<F, impl AsRef<str>: AsRef<str>>(self: Self, arg_id: impl AsRef<str>, f: F) -> Self
where
    F: FnOnce(Arg) -> Arg

Allows one to mutate an Arg after it's been added to a Command.

Panics

If the argument is undefined

Examples

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};

let mut cmd = Command::new("foo")
    .arg(Arg::new("bar")
        .short('b')
        .action(ArgAction::SetTrue))
    .mut_arg("bar", |a| a.short('B'));

let res = cmd.try_get_matches_from_mut(vec!["foo", "-b"]);

// Since we changed `bar`'s short to "B" this should err as there
// is no `-b` anymore, only `-B`

assert!(res.is_err());

let res = cmd.try_get_matches_from_mut(vec!["foo", "-B"]);
assert!(res.is_ok());
fn mut_args<F>(self: Self, f: F) -> Self
where
    F: FnMut(Arg) -> Arg

Allows one to mutate all Args after they've been added to a Command.

This does not affect the built-in --help or --version arguments.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};

let mut cmd = Command::new("foo")
    .arg(Arg::new("bar")
        .long("bar")
        .action(ArgAction::SetTrue))
    .arg(Arg::new("baz")
        .long("baz")
        .action(ArgAction::SetTrue))
    .mut_args(|a| {
        if let Some(l) = a.get_long().map(|l| format!("prefix-{l}")) {
            a.long(l)
        } else {
            a
        }
    });

let res = cmd.try_get_matches_from_mut(vec!["foo", "--bar"]);

// Since we changed `bar`'s long to "prefix-bar" this should err as there
// is no `--bar` anymore, only `--prefix-bar`.

assert!(res.is_err());

let res = cmd.try_get_matches_from_mut(vec!["foo", "--prefix-bar"]);
assert!(res.is_ok());
fn mut_group<F, impl AsRef<str>: AsRef<str>>(self: Self, arg_id: impl AsRef<str>, f: F) -> Self
where
    F: FnOnce(ArgGroup) -> ArgGroup

Allows one to mutate an ArgGroup after it's been added to a Command.

Panics

If the argument is undefined

Examples

# use clap_builder as clap;
# use clap::{Command, arg, ArgGroup};

Command::new("foo")
    .arg(arg!(--"set-ver" <ver> "set the version manually").required(false))
    .arg(arg!(--major "auto increase major"))
    .arg(arg!(--minor "auto increase minor"))
    .arg(arg!(--patch "auto increase patch"))
    .group(ArgGroup::new("vers")
         .args(["set-ver", "major", "minor","patch"])
         .required(true))
    .mut_group("vers", |a| a.required(false));
fn mut_subcommand<F, impl AsRef<str>: AsRef<str>>(self: Self, name: impl AsRef<str>, f: F) -> Self
where
    F: FnOnce(Self) -> Self

Allows one to mutate a Command after it's been added as a subcommand.

This can be useful for modifying auto-generated arguments of nested subcommands with Command::mut_arg.

Panics

If the subcommand is undefined

Examples

# use clap_builder as clap;
# use clap::Command;

let mut cmd = Command::new("foo")
        .subcommand(Command::new("bar"))
        .mut_subcommand("bar", |subcmd| subcmd.disable_help_flag(true));

let res = cmd.try_get_matches_from_mut(vec!["foo", "bar", "--help"]);

// Since we disabled the help flag on the "bar" subcommand, this should err.

assert!(res.is_err());

let res = cmd.try_get_matches_from_mut(vec!["foo", "bar"]);
assert!(res.is_ok());
fn group<impl Into<ArgGroup>: Into<ArgGroup>>(self: Self, group: impl Into<ArgGroup>) -> Self

Adds an ArgGroup to the application.

ArgGroups are a family of related arguments. By placing them in a logical group, you can build easier requirement and exclusion rules.

Example use cases:

  • Make an entire ArgGroup required, meaning that one (and only one) argument from that group must be present at runtime.
  • Name an ArgGroup as a conflict to another argument. Meaning any of the arguments that belong to that group will cause a failure if present with the conflicting argument.
  • Ensure exclusion between arguments.
  • Extract a value from a group instead of determining exactly which argument was used.

Examples

The following example demonstrates using an ArgGroup to ensure that one, and only one, of the arguments from the specified group is present at runtime.

# use clap_builder as clap;
# use clap::{Command, arg, ArgGroup};
Command::new("cmd")
    .arg(arg!(--"set-ver" <ver> "set the version manually").required(false))
    .arg(arg!(--major "auto increase major"))
    .arg(arg!(--minor "auto increase minor"))
    .arg(arg!(--patch "auto increase patch"))
    .group(ArgGroup::new("vers")
         .args(["set-ver", "major", "minor","patch"])
         .required(true))
# ;
fn groups<impl Into<ArgGroup>: Into<ArgGroup>, impl IntoIterator<Item = impl Into<ArgGroup>>: IntoIterator<Item = impl Into<ArgGroup>>>(self: Self, groups: impl IntoIterator<Item = impl Into<ArgGroup>>) -> Self

Adds multiple ArgGroups to the Command at once.

Examples

# use clap_builder as clap;
# use clap::{Command, arg, ArgGroup};
Command::new("cmd")
    .arg(arg!(--"set-ver" <ver> "set the version manually").required(false))
    .arg(arg!(--major         "auto increase major"))
    .arg(arg!(--minor         "auto increase minor"))
    .arg(arg!(--patch         "auto increase patch"))
    .arg(arg!(-c <FILE>       "a config file").required(false))
    .arg(arg!(-i <IFACE>      "an interface").required(false))
    .groups([
        ArgGroup::new("vers")
            .args(["set-ver", "major", "minor","patch"])
            .required(true),
        ArgGroup::new("input")
            .args(["c", "i"])
    ])
# ;
fn subcommand<impl Into<Command>: Into<Command>>(self: Self, subcmd: impl Into<Command>) -> Self

Adds a subcommand to the list of valid possibilities.

Subcommands are effectively sub-Commands, because they can contain their own arguments, subcommands, version, usage, etc. They also function just like Commands, in that they get their own auto generated help, version, and usage.

A subcommand's Command::name will be used for:

  • The argument the user passes in
  • Programmatically looking up the subcommand

Examples

# use clap_builder as clap;
# use clap::{Command, arg};
Command::new("myprog")
    .subcommand(Command::new("config")
        .about("Controls configuration features")
        .arg(arg!(<config> "Required configuration file to use")))
# ;
fn subcommands<impl Into<Self>: Into<Self>, impl IntoIterator<Item = impl Into<Self>>: IntoIterator<Item = impl Into<Self>>>(self: Self, subcmds: impl IntoIterator<Item = impl Into<Self>>) -> Self

Adds multiple subcommands to the list of valid possibilities.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg, };
# Command::new("myprog")
.subcommands( [
       Command::new("config").about("Controls configuration functionality")
                                .arg(Arg::new("config_file")),
       Command::new("debug").about("Controls debug functionality")])
# ;
fn defer(self: Self, deferred: fn(_: Command) -> Command) -> Self

Delay initialization for parts of the Command

This is useful for large applications to delay definitions of subcommands until they are being invoked.

Examples

# use clap_builder as clap;
# use clap::{Command, arg};
Command::new("myprog")
    .subcommand(Command::new("config")
        .about("Controls configuration features")
        .defer(|cmd| {
            cmd.arg(arg!(<config> "Required configuration file to use"))
        })
    )
# ;
fn debug_assert(self: Self)

Catch problems earlier in the development cycle.

Most error states are handled as asserts under the assumption they are programming mistake and not something to handle at runtime. Rather than relying on tests (manual or automated) that exhaustively test your CLI to ensure the asserts are evaluated, this will run those asserts in a way convenient for running as a test.

Note: This will not help with asserts in ArgMatches, those will need exhaustive testing of your CLI.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
fn cmd() -> Command {
    Command::new("foo")
        .arg(
            Arg::new("bar").short('b').action(ArgAction::SetTrue)
        )
}

#[test]
fn verify_app() {
    cmd().debug_assert();
}

fn main() {
    let m = cmd().get_matches_from(vec!["foo", "-b"]);
    println!("{}", m.get_flag("bar"));
}
fn error<impl fmt::Display: fmt::Display>(self: &mut Self, kind: ErrorKind, message: impl fmt::Display) -> Error

Custom error message for post-parsing validation

Examples

# use clap_builder as clap;
# use clap::{Command, error::ErrorKind};
let mut cmd = Command::new("myprog");
let err = cmd.error(ErrorKind::InvalidValue, "Some failure case");
fn get_matches(self: Self) -> ArgMatches

Parse env::args_os, [exiting][Error::exit] on failure.

Panics

If contradictory arguments or settings exist (debug builds).

Examples

# use clap_builder as clap;
# use clap::{Command, Arg};
let matches = Command::new("myprog")
    // Args and options go here...
    .get_matches();
fn get_matches_mut(self: &mut Self) -> ArgMatches

Parse env::args_os, [exiting][Error::exit] on failure.

Like Command::get_matches but doesn't consume the Command.

Panics

If contradictory arguments or settings exist (debug builds).

Examples

# use clap_builder as clap;
# use clap::{Command, Arg};
let mut cmd = Command::new("myprog")
    // Args and options go here...
    ;
let matches = cmd.get_matches_mut();
fn try_get_matches(self: Self) -> ClapResult<ArgMatches>

Parse env::args_os, returning a clap::Result on failure.

NOTE: This method WILL NOT exit when --help or --version (or short versions) are used. It will return a clap::Error, where the kind is a ErrorKind::DisplayHelp or ErrorKind::DisplayVersion respectively. You must call Error::exit or perform a std::process::exit.

Panics

If contradictory arguments or settings exist (debug builds).

Examples

# use clap_builder as clap;
# use clap::{Command, Arg};
let matches = Command::new("myprog")
    // Args and options go here...
    .try_get_matches()
    .unwrap_or_else(|e| e.exit());
fn get_matches_from<I, T>(self: Self, itr: I) -> ArgMatches
where
    I: IntoIterator<Item = T>,
    T: Into<OsString> + Clone

Parse the specified arguments, [exiting][Error::exit] on failure.

NOTE: The first argument will be parsed as the binary name unless Command::no_binary_name is used.

Panics

If contradictory arguments or settings exist (debug builds).

Examples

# use clap_builder as clap;
# use clap::{Command, Arg};
let arg_vec = vec!["my_prog", "some", "args", "to", "parse"];

let matches = Command::new("myprog")
    // Args and options go here...
    .get_matches_from(arg_vec);
fn try_get_matches_from<I, T>(self: Self, itr: I) -> ClapResult<ArgMatches>
where
    I: IntoIterator<Item = T>,
    T: Into<OsString> + Clone

Parse the specified arguments, returning a clap::Result on failure.

NOTE: This method WILL NOT exit when --help or --version (or short versions) are used. It will return a clap::Error, where the kind is a ErrorKind::DisplayHelp or ErrorKind::DisplayVersion respectively. You must call Error::exit or perform a std::process::exit yourself.

NOTE: The first argument will be parsed as the binary name unless Command::no_binary_name is used.

Panics

If contradictory arguments or settings exist (debug builds).

Examples

# use clap_builder as clap;
# use clap::{Command, Arg};
let arg_vec = vec!["my_prog", "some", "args", "to", "parse"];

let matches = Command::new("myprog")
    // Args and options go here...
    .try_get_matches_from(arg_vec)
    .unwrap_or_else(|e| e.exit());
fn try_get_matches_from_mut<I, T>(self: &mut Self, itr: I) -> ClapResult<ArgMatches>
where
    I: IntoIterator<Item = T>,
    T: Into<OsString> + Clone

Parse the specified arguments, returning a clap::Result on failure.

Like Command::try_get_matches_from but doesn't consume the Command.

NOTE: This method WILL NOT exit when --help or --version (or short versions) are used. It will return a clap::Error, where the kind is a ErrorKind::DisplayHelp or ErrorKind::DisplayVersion respectively. You must call Error::exit or perform a std::process::exit yourself.

NOTE: The first argument will be parsed as the binary name unless Command::no_binary_name is used.

Panics

If contradictory arguments or settings exist (debug builds).

Examples

# use clap_builder as clap;
# use clap::{Command, Arg};
let arg_vec = vec!["my_prog", "some", "args", "to", "parse"];

let mut cmd = Command::new("myprog");
    // Args and options go here...
let matches = cmd.try_get_matches_from_mut(arg_vec)
    .unwrap_or_else(|e| e.exit());
fn print_help(self: &mut Self) -> io::Result<()>

Prints the short help message (-h) to io::stdout().

See also Command::print_long_help.

Examples

# use clap_builder as clap;
# use clap::Command;
let mut cmd = Command::new("myprog");
cmd.print_help();
fn print_long_help(self: &mut Self) -> io::Result<()>

Prints the long help message (--help) to io::stdout().

See also Command::print_help.

Examples

# use clap_builder as clap;
# use clap::Command;
let mut cmd = Command::new("myprog");
cmd.print_long_help();
fn render_help(self: &mut Self) -> StyledStr

Render the short help message (-h) to a StyledStr

See also Command::render_long_help.

Examples

# use clap_builder as clap;
# use clap::Command;
use std::io;
let mut cmd = Command::new("myprog");
let mut out = io::stdout();
let help = cmd.render_help();
println!("{help}");
fn render_long_help(self: &mut Self) -> StyledStr

Render the long help message (--help) to a StyledStr.

See also Command::render_help.

Examples

# use clap_builder as clap;
# use clap::Command;
use std::io;
let mut cmd = Command::new("myprog");
let mut out = io::stdout();
let help = cmd.render_long_help();
println!("{help}");
fn render_version(self: &Self) -> String

Version message rendered as if the user ran -V.

See also Command::render_long_version.

Coloring

This function does not try to color the message nor it inserts any ANSI escape codes.

Examples

# use clap_builder as clap;
# use clap::Command;
use std::io;
let cmd = Command::new("myprog");
println!("{}", cmd.render_version());
fn render_long_version(self: &Self) -> String

Version message rendered as if the user ran --version.

See also Command::render_version.

Coloring

This function does not try to color the message nor it inserts any ANSI escape codes.

Examples

# use clap_builder as clap;
# use clap::Command;
use std::io;
let cmd = Command::new("myprog");
println!("{}", cmd.render_long_version());
fn render_usage(self: &mut Self) -> StyledStr

Usage statement

Examples

# use clap_builder as clap;
# use clap::Command;
use std::io;
let mut cmd = Command::new("myprog");
println!("{}", cmd.render_usage());

impl Command

fn short_flag<impl IntoResettable<char>: IntoResettable<char>>(self: Self, short: impl IntoResettable<char>) -> Self

Sets the short version of the subcommand flag without the preceding -.

Allows the subcommand to be used as if it were an Arg::short.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let matches = Command::new("pacman")
    .subcommand(
        Command::new("sync").short_flag('S').arg(
            Arg::new("search")
                .short('s')
                .long("search")
                .action(ArgAction::SetTrue)
                .help("search remote repositories for matching strings"),
        ),
    )
    .get_matches_from(vec!["pacman", "-Ss"]);

assert_eq!(matches.subcommand_name().unwrap(), "sync");
let sync_matches = matches.subcommand_matches("sync").unwrap();
assert!(sync_matches.get_flag("search"));
fn long_flag<impl Into<Str>: Into<Str>>(self: Self, long: impl Into<Str>) -> Self

Sets the long version of the subcommand flag without the preceding --.

Allows the subcommand to be used as if it were an Arg::long.

NOTE: Any leading - characters will be stripped.

Examples

To set long_flag use a word containing valid UTF-8 codepoints. If you supply a double leading -- such as --sync they will be stripped. Hyphens in the middle of the word; however, will not be stripped (i.e. sync-file is allowed).

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let matches = Command::new("pacman")
    .subcommand(
        Command::new("sync").long_flag("sync").arg(
            Arg::new("search")
                .short('s')
                .long("search")
                .action(ArgAction::SetTrue)
                .help("search remote repositories for matching strings"),
        ),
    )
    .get_matches_from(vec!["pacman", "--sync", "--search"]);

assert_eq!(matches.subcommand_name().unwrap(), "sync");
let sync_matches = matches.subcommand_matches("sync").unwrap();
assert!(sync_matches.get_flag("search"));
fn alias<impl IntoResettable<Str>: IntoResettable<Str>>(self: Self, name: impl IntoResettable<Str>) -> Self

Sets a hidden alias to this subcommand.

This allows the subcommand to be accessed via either the original name, or this given alias. This is more efficient and easier than creating multiple hidden subcommands as one only needs to check for the existence of this command, and not all aliased variants.

NOTE: Aliases defined with this method are hidden from the help message. If you're looking for aliases that will be displayed in the help message, see Command::visible_alias.

NOTE: When using aliases and checking for the existence of a particular subcommand within an ArgMatches struct, one only needs to search for the original name and not all aliases.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg, };
let m = Command::new("myprog")
    .subcommand(Command::new("test")
        .alias("do-stuff"))
    .get_matches_from(vec!["myprog", "do-stuff"]);
assert_eq!(m.subcommand_name(), Some("test"));
fn short_flag_alias<impl IntoResettable<char>: IntoResettable<char>>(self: Self, name: impl IntoResettable<char>) -> Self

Add an alias, which functions as "hidden" short flag subcommand

This will automatically dispatch as if this subcommand was used. This is more efficient, and easier than creating multiple hidden subcommands as one only needs to check for the existence of this command, and not all variants.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg, };
let m = Command::new("myprog")
            .subcommand(Command::new("test").short_flag('t')
                .short_flag_alias('d'))
            .get_matches_from(vec!["myprog", "-d"]);
assert_eq!(m.subcommand_name(), Some("test"));
fn long_flag_alias<impl IntoResettable<Str>: IntoResettable<Str>>(self: Self, name: impl IntoResettable<Str>) -> Self

Add an alias, which functions as a "hidden" long flag subcommand.

This will automatically dispatch as if this subcommand was used. This is more efficient, and easier than creating multiple hidden subcommands as one only needs to check for the existence of this command, and not all variants.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg, };
let m = Command::new("myprog")
            .subcommand(Command::new("test").long_flag("test")
                .long_flag_alias("testing"))
            .get_matches_from(vec!["myprog", "--testing"]);
assert_eq!(m.subcommand_name(), Some("test"));
fn aliases<impl Into<Str>: Into<Str>, impl IntoIterator<Item = impl Into<Str>>: IntoIterator<Item = impl Into<Str>>>(self: Self, names: impl IntoIterator<Item = impl Into<Str>>) -> Self

Sets multiple hidden aliases to this subcommand.

This allows the subcommand to be accessed via either the original name or any of the given aliases. This is more efficient, and easier than creating multiple hidden subcommands as one only needs to check for the existence of this command and not all aliased variants.

NOTE: Aliases defined with this method are hidden from the help message. If looking for aliases that will be displayed in the help message, see Command::visible_aliases.

NOTE: When using aliases and checking for the existence of a particular subcommand within an ArgMatches struct, one only needs to search for the original name and not all aliases.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg};
let m = Command::new("myprog")
    .subcommand(Command::new("test")
        .aliases(["do-stuff", "do-tests", "tests"]))
        .arg(Arg::new("input")
            .help("the file to add")
            .required(false))
    .get_matches_from(vec!["myprog", "do-tests"]);
assert_eq!(m.subcommand_name(), Some("test"));
fn short_flag_aliases<impl IntoIterator<Item = char>: IntoIterator<Item = char>>(self: Self, names: impl IntoIterator<Item = char>) -> Self

Add aliases, which function as "hidden" short flag subcommands.

These will automatically dispatch as if this subcommand was used. This is more efficient, and easier than creating multiple hidden subcommands as one only needs to check for the existence of this command, and not all variants.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg, };
let m = Command::new("myprog")
    .subcommand(Command::new("test").short_flag('t')
        .short_flag_aliases(['a', 'b', 'c']))
        .arg(Arg::new("input")
            .help("the file to add")
            .required(false))
    .get_matches_from(vec!["myprog", "-a"]);
assert_eq!(m.subcommand_name(), Some("test"));
fn long_flag_aliases<impl Into<Str>: Into<Str>, impl IntoIterator<Item = impl Into<Str>>: IntoIterator<Item = impl Into<Str>>>(self: Self, names: impl IntoIterator<Item = impl Into<Str>>) -> Self

Add aliases, which function as "hidden" long flag subcommands.

These will automatically dispatch as if this subcommand was used. This is more efficient, and easier than creating multiple hidden subcommands as one only needs to check for the existence of this command, and not all variants.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg, };
let m = Command::new("myprog")
            .subcommand(Command::new("test").long_flag("test")
                .long_flag_aliases(["testing", "testall", "test_all"]))
                .arg(Arg::new("input")
                            .help("the file to add")
                            .required(false))
            .get_matches_from(vec!["myprog", "--testing"]);
assert_eq!(m.subcommand_name(), Some("test"));
fn visible_alias<impl IntoResettable<Str>: IntoResettable<Str>>(self: Self, name: impl IntoResettable<Str>) -> Self

Sets a visible alias to this subcommand.

This allows the subcommand to be accessed via either the original name or the given alias. This is more efficient and easier than creating hidden subcommands as one only needs to check for the existence of this command and not all aliased variants.

NOTE: The alias defined with this method is visible from the help message and displayed as if it were just another regular subcommand. If looking for an alias that will not be displayed in the help message, see Command::alias.

NOTE: When using aliases and checking for the existence of a particular subcommand within an ArgMatches struct, one only needs to search for the original name and not all aliases.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg};
let m = Command::new("myprog")
    .subcommand(Command::new("test")
        .visible_alias("do-stuff"))
    .get_matches_from(vec!["myprog", "do-stuff"]);
assert_eq!(m.subcommand_name(), Some("test"));
fn visible_short_flag_alias<impl IntoResettable<char>: IntoResettable<char>>(self: Self, name: impl IntoResettable<char>) -> Self

Add an alias, which functions as "visible" short flag subcommand

This will automatically dispatch as if this subcommand was used. This is more efficient, and easier than creating multiple hidden subcommands as one only needs to check for the existence of this command, and not all variants.

See also Command::short_flag_alias.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg, };
let m = Command::new("myprog")
            .subcommand(Command::new("test").short_flag('t')
                .visible_short_flag_alias('d'))
            .get_matches_from(vec!["myprog", "-d"]);
assert_eq!(m.subcommand_name(), Some("test"));
fn visible_long_flag_alias<impl IntoResettable<Str>: IntoResettable<Str>>(self: Self, name: impl IntoResettable<Str>) -> Self

Add an alias, which functions as a "visible" long flag subcommand.

This will automatically dispatch as if this subcommand was used. This is more efficient, and easier than creating multiple hidden subcommands as one only needs to check for the existence of this command, and not all variants.

See also Command::long_flag_alias.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg, };
let m = Command::new("myprog")
            .subcommand(Command::new("test").long_flag("test")
                .visible_long_flag_alias("testing"))
            .get_matches_from(vec!["myprog", "--testing"]);
assert_eq!(m.subcommand_name(), Some("test"));
fn visible_aliases<impl Into<Str>: Into<Str>, impl IntoIterator<Item = impl Into<Str>>: IntoIterator<Item = impl Into<Str>>>(self: Self, names: impl IntoIterator<Item = impl Into<Str>>) -> Self

Sets multiple visible aliases to this subcommand.

This allows the subcommand to be accessed via either the original name or any of the given aliases. This is more efficient and easier than creating multiple hidden subcommands as one only needs to check for the existence of this command and not all aliased variants.

NOTE: The alias defined with this method is visible from the help message and displayed as if it were just another regular subcommand. If looking for an alias that will not be displayed in the help message, see Command::alias.

NOTE: When using aliases, and checking for the existence of a particular subcommand within an ArgMatches struct, one only needs to search for the original name and not all aliases.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg, };
let m = Command::new("myprog")
    .subcommand(Command::new("test")
        .visible_aliases(["do-stuff", "tests"]))
    .get_matches_from(vec!["myprog", "do-stuff"]);
assert_eq!(m.subcommand_name(), Some("test"));
fn visible_short_flag_aliases<impl IntoIterator<Item = char>: IntoIterator<Item = char>>(self: Self, names: impl IntoIterator<Item = char>) -> Self

Add aliases, which function as visible short flag subcommands.

See Command::short_flag_aliases.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg, };
let m = Command::new("myprog")
            .subcommand(Command::new("test").short_flag('b')
                .visible_short_flag_aliases(['t']))
            .get_matches_from(vec!["myprog", "-t"]);
assert_eq!(m.subcommand_name(), Some("test"));
fn visible_long_flag_aliases<impl Into<Str>: Into<Str>, impl IntoIterator<Item = impl Into<Str>>: IntoIterator<Item = impl Into<Str>>>(self: Self, names: impl IntoIterator<Item = impl Into<Str>>) -> Self

Add aliases, which function as visible long flag subcommands.

See Command::long_flag_aliases.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg, };
let m = Command::new("myprog")
            .subcommand(Command::new("test").long_flag("test")
                .visible_long_flag_aliases(["testing", "testall", "test_all"]))
            .get_matches_from(vec!["myprog", "--testing"]);
assert_eq!(m.subcommand_name(), Some("test"));
fn display_order<impl IntoResettable<usize>: IntoResettable<usize>>(self: Self, ord: impl IntoResettable<usize>) -> Self

Set the placement of this subcommand within the help.

Subcommands with a lower value will be displayed first in the help message. Those with the same display order will be sorted.

Commands are automatically assigned a display order based on the order they are added to their parent Command. Overriding this is helpful when the order commands are added in isn't the same as the display order, whether in one-off cases or to automatically sort commands.

Examples

# #[cfg(feature = "help")] {
# use clap_builder as clap;
# use clap::{Command, };
let m = Command::new("cust-ord")
    .subcommand(Command::new("beta")
        .display_order(0)  // Sort
        .about("Some help and text"))
    .subcommand(Command::new("alpha")
        .display_order(0)  // Sort
        .about("I should be first!"))
    .get_matches_from(vec![
        "cust-ord", "--help"
    ]);
# }

The above example displays the following help message

cust-ord

Usage: cust-ord [OPTIONS]

Commands:
    alpha    I should be first!
    beta     Some help and text
    help     Print help for the subcommand(s)

Options:
    -h, --help       Print help
    -V, --version    Print version
fn hide(self: Self, yes: bool) -> Self

Specifies that this subcommand should be hidden from help messages

Examples

# use clap_builder as clap;
# use clap::{Command, Arg};
Command::new("myprog")
    .subcommand(
        Command::new("test").hide(true)
    )
# ;
fn subcommand_required(self: Self, yes: bool) -> Self

If no subcommand is present at runtime, error and exit gracefully.

Examples

# use clap_builder as clap;
# use clap::{Command, error::ErrorKind};
let err = Command::new("myprog")
    .subcommand_required(true)
    .subcommand(Command::new("test"))
    .try_get_matches_from(vec![
        "myprog",
    ]);
assert!(err.is_err());
assert_eq!(err.unwrap_err().kind(), ErrorKind::MissingSubcommand);
# ;
fn allow_external_subcommands(self: Self, yes: bool) -> Self

Assume unexpected positional arguments are a subcommand.

Arguments will be stored in the "" argument in the ArgMatches

NOTE: Use this setting with caution, as a truly unexpected argument (i.e. one that is NOT an external subcommand) will not cause an error and instead be treated as a potential subcommand. One should check for such cases manually and inform the user appropriately.

NOTE: A built-in subcommand will be parsed as an external subcommand when escaped with --.

Examples

# use clap_builder as clap;
# use std::ffi::OsString;
# use clap::Command;
// Assume there is an external subcommand named "subcmd"
let m = Command::new("myprog")
    .allow_external_subcommands(true)
    .get_matches_from(vec![
        "myprog", "subcmd", "--option", "value", "-fff", "--flag"
    ]);

// All trailing arguments will be stored under the subcommand's sub-matches using an empty
// string argument name
match m.subcommand() {
    Some((external, ext_m)) => {
         let ext_args: Vec<_> = ext_m.get_many::<OsString>("").unwrap().collect();
         assert_eq!(external, "subcmd");
         assert_eq!(ext_args, ["--option", "value", "-fff", "--flag"]);
    },
    _ => {},
}
fn external_subcommand_value_parser<impl IntoResettable<super::ValueParser>: IntoResettable<super::ValueParser>>(self: Self, parser: impl IntoResettable<super::ValueParser>) -> Self

Specifies how to parse external subcommand arguments.

The default parser is for OsString. This can be used to switch it to String or another type.

NOTE: Setting this requires Command::allow_external_subcommands

Examples

# #[cfg(unix)] {
# use clap_builder as clap;
# use std::ffi::OsString;
# use clap::Command;
# use clap::value_parser;
// Assume there is an external subcommand named "subcmd"
let m = Command::new("myprog")
    .allow_external_subcommands(true)
    .get_matches_from(vec![
        "myprog", "subcmd", "--option", "value", "-fff", "--flag"
    ]);

// All trailing arguments will be stored under the subcommand's sub-matches using an empty
// string argument name
match m.subcommand() {
    Some((external, ext_m)) => {
         let ext_args: Vec<_> = ext_m.get_many::<OsString>("").unwrap().collect();
         assert_eq!(external, "subcmd");
         assert_eq!(ext_args, ["--option", "value", "-fff", "--flag"]);
    },
    _ => {},
}
# }
# use clap_builder as clap;
# use clap::Command;
# use clap::value_parser;
// Assume there is an external subcommand named "subcmd"
let m = Command::new("myprog")
    .external_subcommand_value_parser(value_parser!(String))
    .get_matches_from(vec![
        "myprog", "subcmd", "--option", "value", "-fff", "--flag"
    ]);

// All trailing arguments will be stored under the subcommand's sub-matches using an empty
// string argument name
match m.subcommand() {
    Some((external, ext_m)) => {
         let ext_args: Vec<_> = ext_m.get_many::<String>("").unwrap().collect();
         assert_eq!(external, "subcmd");
         assert_eq!(ext_args, ["--option", "value", "-fff", "--flag"]);
    },
    _ => {},
}
fn args_conflicts_with_subcommands(self: Self, yes: bool) -> Self

Specifies that use of an argument prevents the use of subcommands.

By default clap allows arguments between subcommands such as <cmd> [cmd_args] <subcmd> [subcmd_args] <subsubcmd> [subsubcmd_args].

This setting disables that functionality and says that arguments can only follow the final subcommand. For instance using this setting makes only the following invocations possible:

  • <cmd> <subcmd> <subsubcmd> [subsubcmd_args]
  • <cmd> <subcmd> [subcmd_args]
  • <cmd> [cmd_args]

Examples

# use clap_builder as clap;
# use clap::Command;
Command::new("myprog")
    .args_conflicts_with_subcommands(true);
fn subcommand_precedence_over_arg(self: Self, yes: bool) -> Self

Prevent subcommands from being consumed as an arguments value.

By default, if an option taking multiple values is followed by a subcommand, the subcommand will be parsed as another value.

cmd --foo val1 val2 subcommand
          --------- ----------
            values   another value

This setting instructs the parser to stop when encountering a subcommand instead of greedily consuming arguments.

cmd --foo val1 val2 subcommand
          --------- ----------
            values   subcommand

Examples

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
let cmd = Command::new("cmd").subcommand(Command::new("sub")).arg(
    Arg::new("arg")
        .long("arg")
        .num_args(1..)
        .action(ArgAction::Set),
);

let matches = cmd
    .clone()
    .try_get_matches_from(&["cmd", "--arg", "1", "2", "3", "sub"])
    .unwrap();
assert_eq!(
    matches.get_many::<String>("arg").unwrap().collect::<Vec<_>>(),
    &["1", "2", "3", "sub"]
);
assert!(matches.subcommand_matches("sub").is_none());

let matches = cmd
    .subcommand_precedence_over_arg(true)
    .try_get_matches_from(&["cmd", "--arg", "1", "2", "3", "sub"])
    .unwrap();
assert_eq!(
    matches.get_many::<String>("arg").unwrap().collect::<Vec<_>>(),
    &["1", "2", "3"]
);
assert!(matches.subcommand_matches("sub").is_some());
fn subcommand_negates_reqs(self: Self, yes: bool) -> Self

Allows subcommands to override all requirements of the parent command.

For example, if you had a subcommand or top level application with a required argument that is only required as long as there is no subcommand present, using this setting would allow you to set those arguments to Arg::required(true) and yet receive no error so long as the user uses a valid subcommand instead.

NOTE: This defaults to false (using subcommand does not negate requirements)

Examples

This first example shows that it is an error to not use a required argument

# use clap_builder as clap;
# use clap::{Command, Arg, error::ErrorKind};
let err = Command::new("myprog")
    .subcommand_negates_reqs(true)
    .arg(Arg::new("opt").required(true))
    .subcommand(Command::new("test"))
    .try_get_matches_from(vec![
        "myprog"
    ]);
assert!(err.is_err());
assert_eq!(err.unwrap_err().kind(), ErrorKind::MissingRequiredArgument);
# ;

This next example shows that it is no longer error to not use a required argument if a valid subcommand is used.

# use clap_builder as clap;
# use clap::{Command, Arg, error::ErrorKind};
let noerr = Command::new("myprog")
    .subcommand_negates_reqs(true)
    .arg(Arg::new("opt").required(true))
    .subcommand(Command::new("test"))
    .try_get_matches_from(vec![
        "myprog", "test"
    ]);
assert!(noerr.is_ok());
# ;
fn multicall(self: Self, yes: bool) -> Self

Multiple-personality program dispatched on the binary name (argv[0])

A "multicall" executable is a single executable that contains a variety of applets, and decides which applet to run based on the name of the file. The executable can be called from different names by creating hard links or symbolic links to it.

This is desirable for:

  • Easy distribution, a single binary that can install hardlinks to access the different personalities.
  • Minimal binary size by sharing common code (e.g. standard library, clap)
  • Custom shells or REPLs where there isn't a single top-level command

Setting multicall will cause

  • argv[0] to be stripped to the base name and parsed as the first argument, as if [Command::no_binary_name][Command::no_binary_name] was set.
  • Help and errors to report subcommands as if they were the top-level command

When the subcommand is not present, there are several strategies you may employ, depending on your needs:

  • Let the error percolate up normally
  • Print a specialized error message using the [Error::context][crate::Error::context]
  • Print the [help][Command::write_help] but this might be ambiguous
  • Disable multicall and re-parse it
  • Disable multicall and re-parse it with a specific subcommand

When detecting the error condition, the ErrorKind isn't sufficient as a sub-subcommand might report the same error. Enable [allow_external_subcommands][Command::allow_external_subcommands] if you want to specifically get the unrecognized binary name.

NOTE: Multicall can't be used with no_binary_name since they interpret the command name in incompatible ways.

NOTE: The multicall command cannot have arguments.

NOTE: Applets are slightly semantically different from subcommands, so it's recommended to use Command::subcommand_help_heading and Command::subcommand_value_name to change the descriptive text as above.

Examples

hostname is an example of a multicall executable. Both hostname and dnsdomainname are provided by the same executable and which behaviour to use is based on the executable file name.

This is desirable when the executable has a primary purpose but there is related functionality that would be convenient to provide and implement it to be in the same executable.

The name of the cmd is essentially unused and may be the same as the name of a subcommand.

The names of the immediate subcommands of the Command are matched against the basename of the first argument, which is conventionally the path of the executable.

This does not allow the subcommand to be passed as the first non-path argument.

# use clap_builder as clap;
# use clap::{Command, error::ErrorKind};
let mut cmd = Command::new("hostname")
    .multicall(true)
    .subcommand(Command::new("hostname"))
    .subcommand(Command::new("dnsdomainname"));
let m = cmd.try_get_matches_from_mut(&["/usr/bin/hostname", "dnsdomainname"]);
assert!(m.is_err());
assert_eq!(m.unwrap_err().kind(), ErrorKind::UnknownArgument);
let m = cmd.get_matches_from(&["/usr/bin/dnsdomainname"]);
assert_eq!(m.subcommand_name(), Some("dnsdomainname"));

Busybox is another common example of a multicall executable with a subcommmand for each applet that can be run directly, e.g. with the cat applet being run by running busybox cat, or with cat as a link to the busybox binary.

This is desirable when the launcher program has additional options or it is useful to run the applet without installing a symlink e.g. to test the applet without installing it or there may already be a command of that name installed.

To make an applet usable as both a multicall link and a subcommand the subcommands must be defined both in the top-level Command and as subcommands of the "main" applet.

# use clap_builder as clap;
# use clap::Command;
fn applet_commands() -> [Command; 2] {
    [Command::new("true"), Command::new("false")]
}
let mut cmd = Command::new("busybox")
    .multicall(true)
    .subcommand(
        Command::new("busybox")
            .subcommand_value_name("APPLET")
            .subcommand_help_heading("APPLETS")
            .subcommands(applet_commands()),
    )
    .subcommands(applet_commands());
// When called from the executable's canonical name
// its applets can be matched as subcommands.
let m = cmd.try_get_matches_from_mut(&["/usr/bin/busybox", "true"]).unwrap();
assert_eq!(m.subcommand_name(), Some("busybox"));
assert_eq!(m.subcommand().unwrap().1.subcommand_name(), Some("true"));
// When called from a link named after an applet that applet is matched.
let m = cmd.get_matches_from(&["/usr/bin/true"]);
assert_eq!(m.subcommand_name(), Some("true"));
fn subcommand_value_name<impl IntoResettable<Str>: IntoResettable<Str>>(self: Self, value_name: impl IntoResettable<Str>) -> Self

Sets the value name used for subcommands when printing usage and help.

By default, this is "COMMAND".

See also Command::subcommand_help_heading

Examples

# use clap_builder as clap;
# use clap::{Command, Arg};
Command::new("myprog")
    .subcommand(Command::new("sub1"))
    .print_help()
# ;

will produce

myprog

Usage: myprog [COMMAND]

Commands:
    help    Print this message or the help of the given subcommand(s)
    sub1

Options:
    -h, --help       Print help
    -V, --version    Print version

but usage of subcommand_value_name

# use clap_builder as clap;
# use clap::{Command, Arg};
Command::new("myprog")
    .subcommand(Command::new("sub1"))
    .subcommand_value_name("THING")
    .print_help()
# ;

will produce

myprog

Usage: myprog [THING]

Commands:
    help    Print this message or the help of the given subcommand(s)
    sub1

Options:
    -h, --help       Print help
    -V, --version    Print version
fn subcommand_help_heading<impl IntoResettable<Str>: IntoResettable<Str>>(self: Self, heading: impl IntoResettable<Str>) -> Self

Sets the help heading used for subcommands when printing usage and help.

By default, this is "Commands".

See also Command::subcommand_value_name

Examples

# use clap_builder as clap;
# use clap::{Command, Arg};
Command::new("myprog")
    .subcommand(Command::new("sub1"))
    .print_help()
# ;

will produce

myprog

Usage: myprog [COMMAND]

Commands:
    help    Print this message or the help of the given subcommand(s)
    sub1

Options:
    -h, --help       Print help
    -V, --version    Print version

but usage of subcommand_help_heading

# use clap_builder as clap;
# use clap::{Command, Arg};
Command::new("myprog")
    .subcommand(Command::new("sub1"))
    .subcommand_help_heading("Things")
    .print_help()
# ;

will produce

myprog

Usage: myprog [COMMAND]

Things:
    help    Print this message or the help of the given subcommand(s)
    sub1

Options:
    -h, --help       Print help
    -V, --version    Print version

impl Command

fn name<impl Into<Str>: Into<Str>>(self: Self, name: impl Into<Str>) -> Self

(Re)Sets the program's name.

See Command::new for more details.

Examples

let cmd = clap::command!()
    .name("foo");

// continued logic goes here, such as `cmd.get_matches()` etc.
fn bin_name<impl IntoResettable<String>: IntoResettable<String>>(self: Self, name: impl IntoResettable<String>) -> Self

Overrides the runtime-determined name of the binary for help and error messages.

This should only be used when absolutely necessary, such as when the binary name for your application is misleading, or perhaps not how the user should invoke your program.

TIP: When building things such as third party cargo subcommands, this setting should be used!

NOTE: This does not change or set the name of the binary file on disk. It only changes what clap thinks the name is for the purposes of error or help messages.

Examples

# use clap_builder as clap;
# use clap::Command;
Command::new("My Program")
     .bin_name("my_binary")
# ;
fn display_name<impl IntoResettable<String>: IntoResettable<String>>(self: Self, name: impl IntoResettable<String>) -> Self

Overrides the runtime-determined display name of the program for help and error messages.

Examples

# use clap_builder as clap;
# use clap::Command;
Command::new("My Program")
     .display_name("my_program")
# ;
fn author<impl IntoResettable<Str>: IntoResettable<Str>>(self: Self, author: impl IntoResettable<Str>) -> Self

Sets the author(s) for the help message.

TIP: Use claps convenience macro [crate_authors!] to automatically set your application's author(s) to the same thing as your crate at compile time.

NOTE: A custom [help_template][Command::help_template] is needed for author to show up.

Examples

# use clap_builder as clap;
# use clap::Command;
Command::new("myprog")
     .author("Me, me@mymain.com")
# ;
fn about<impl IntoResettable<StyledStr>: IntoResettable<StyledStr>>(self: Self, about: impl IntoResettable<StyledStr>) -> Self

Sets the program's description for the short help (-h).

If Command::long_about is not specified, this message will be displayed for --help.

See also crate_description!.

Examples

# use clap_builder as clap;
# use clap::Command;
Command::new("myprog")
    .about("Does really amazing things for great people")
# ;
fn long_about<impl IntoResettable<StyledStr>: IntoResettable<StyledStr>>(self: Self, long_about: impl IntoResettable<StyledStr>) -> Self

Sets the program's description for the long help (--help).

If not set, Command::about will be used for long help in addition to short help (-h).

NOTE: Only Command::about (short format) is used in completion script generation in order to be concise.

Examples

# use clap_builder as clap;
# use clap::Command;
Command::new("myprog")
    .long_about(
"Does really amazing things to great people. Now let's talk a little
 more in depth about how this subcommand really works. It may take about
 a few lines of text, but that's ok!")
# ;
fn after_help<impl IntoResettable<StyledStr>: IntoResettable<StyledStr>>(self: Self, help: impl IntoResettable<StyledStr>) -> Self

Free-form help text for after auto-generated short help (-h).

This is often used to describe how to use the arguments, caveats to be noted, or license and contact information.

If Command::after_long_help is not specified, this message will be displayed for --help.

Examples

# use clap_builder as clap;
# use clap::Command;
Command::new("myprog")
    .after_help("Does really amazing things for great people... but be careful with -R!")
# ;
fn after_long_help<impl IntoResettable<StyledStr>: IntoResettable<StyledStr>>(self: Self, help: impl IntoResettable<StyledStr>) -> Self

Free-form help text for after auto-generated long help (--help).

This is often used to describe how to use the arguments, caveats to be noted, or license and contact information.

If not set, Command::after_help will be used for long help in addition to short help (-h).

Examples

# use clap_builder as clap;
# use clap::Command;
Command::new("myprog")
    .after_long_help("Does really amazing things to great people... but be careful with -R, \
                     like, for real, be careful with this!")
# ;
fn before_help<impl IntoResettable<StyledStr>: IntoResettable<StyledStr>>(self: Self, help: impl IntoResettable<StyledStr>) -> Self

Free-form help text for before auto-generated short help (-h).

This is often used for header, copyright, or license information.

If Command::before_long_help is not specified, this message will be displayed for --help.

Examples

# use clap_builder as clap;
# use clap::Command;
Command::new("myprog")
    .before_help("Some info I'd like to appear before the help info")
# ;
fn before_long_help<impl IntoResettable<StyledStr>: IntoResettable<StyledStr>>(self: Self, help: impl IntoResettable<StyledStr>) -> Self

Free-form help text for before auto-generated long help (--help).

This is often used for header, copyright, or license information.

If not set, Command::before_help will be used for long help in addition to short help (-h).

Examples

# use clap_builder as clap;
# use clap::Command;
Command::new("myprog")
    .before_long_help("Some verbose and long info I'd like to appear before the help info")
# ;
fn version<impl IntoResettable<Str>: IntoResettable<Str>>(self: Self, ver: impl IntoResettable<Str>) -> Self

Sets the version for the short version (-V) and help messages.

If Command::long_version is not specified, this message will be displayed for --version.

TIP: Use claps convenience macro [crate_version!] to automatically set your application's version to the same thing as your crate at compile time.

Examples

# use clap_builder as clap;
# use clap::Command;
Command::new("myprog")
    .version("v0.1.24")
# ;
fn long_version<impl IntoResettable<Str>: IntoResettable<Str>>(self: Self, ver: impl IntoResettable<Str>) -> Self

Sets the version for the long version (--version) and help messages.

If Command::version is not specified, this message will be displayed for -V.

TIP: Use claps convenience macro [crate_version!] to automatically set your application's version to the same thing as your crate at compile time.

Examples

# use clap_builder as clap;
# use clap::Command;
Command::new("myprog")
    .long_version(
"v0.1.24
 commit: abcdef89726d
 revision: 123
 release: 2
 binary: myprog")
# ;
fn override_usage<impl IntoResettable<StyledStr>: IntoResettable<StyledStr>>(self: Self, usage: impl IntoResettable<StyledStr>) -> Self

Overrides the clap generated usage string for help and error messages.

NOTE: Using this setting disables claps "context-aware" usage strings. After this setting is set, this will be the only usage string displayed to the user!

NOTE: Multiple usage lines may be present in the usage argument, but some rules need to be followed to ensure the usage lines are formatted correctly by the default help formatter:

  • Do not indent the first usage line.
  • Indent all subsequent usage lines with seven spaces.
  • The last line must not end with a newline.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg};
Command::new("myprog")
    .override_usage("myapp [-clDas] <some_file>")
# ;

Or for multiple usage lines:

# use clap_builder as clap;
# use clap::{Command, Arg};
Command::new("myprog")
    .override_usage(
        "myapp -X [-a] [-b] <file>\n       \
         myapp -Y [-c] <file1> <file2>\n       \
         myapp -Z [-d|-e]"
    )
# ;
fn override_help<impl IntoResettable<StyledStr>: IntoResettable<StyledStr>>(self: Self, help: impl IntoResettable<StyledStr>) -> Self

Overrides the clap generated help message (both -h and --help).

This should only be used when the auto-generated message does not suffice.

NOTE: This only replaces the help message for the current command, meaning if you are using subcommands, those help messages will still be auto-generated unless you specify a Command::override_help for them as well.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg};
Command::new("myapp")
    .override_help("myapp v1.0\n\
           Does awesome things\n\
           (C) me@mail.com\n\n\

           Usage: myapp <opts> <command>\n\n\

           Options:\n\
           -h, --help       Display this message\n\
           -V, --version    Display version info\n\
           -s <stuff>       Do something with stuff\n\
           -v               Be verbose\n\n\

           Commands:\n\
           help             Print this message\n\
           work             Do some work")
# ;
fn help_template<impl IntoResettable<StyledStr>: IntoResettable<StyledStr>>(self: Self, s: impl IntoResettable<StyledStr>) -> Self

Sets the help template to be used, overriding the default format.

Tags are given inside curly brackets.

Valid tags are:

  • {name} - Display name for the (sub-)command.
  • {bin} - Binary name.(deprecated)
  • {version} - Version number.
  • {author} - Author information.
  • {author-with-newline} - Author followed by \n.
  • {author-section} - Author preceded and followed by \n.
  • {about} - General description (from Command::about or Command::long_about).
  • {about-with-newline} - About followed by \n.
  • {about-section} - About preceded and followed by '\n'.
  • {usage-heading} - Automatically generated usage heading.
  • {usage} - Automatically generated or given usage string.
  • {all-args} - Help for all arguments (options, flags, positional arguments, and subcommands) including titles.
  • {options} - Help for options.
  • {positionals} - Help for positional arguments.
  • {subcommands} - Help for subcommands.
  • {tab} - Standard tab sized used within clap
  • {after-help} - Help from Command::after_help or Command::after_long_help.
  • {before-help} - Help from Command::before_help or Command::before_long_help.

Examples

For a very brief help:

# use clap_builder as clap;
# use clap::Command;
Command::new("myprog")
    .version("1.0")
    .help_template("{name} ({version}) - {usage}")
# ;

For showing more application context:

# use clap_builder as clap;
# use clap::Command;
Command::new("myprog")
    .version("1.0")
    .help_template("\
{before-help}{name} {version}
{author-with-newline}{about-with-newline}
{usage-heading} {usage}

{all-args}{after-help}
")
# ;
fn flatten_help(self: Self, yes: bool) -> Self

Flatten subcommand help into the current command's help

This shows a summary of subcommands within the usage and help for the current command, similar to git stash --help showing information on push, pop, etc. To see more information, a user can still pass --help to the individual subcommands.

fn next_help_heading<impl IntoResettable<Str>: IntoResettable<Str>>(self: Self, heading: impl IntoResettable<Str>) -> Self

Set the default section heading for future args.

This will be used for any arg that hasn't had Arg::help_heading called.

This is useful if the default Options or Arguments headings are not specific enough for one's use case.

For subcommands, see Command::subcommand_help_heading

fn next_display_order<impl IntoResettable<usize>: IntoResettable<usize>>(self: Self, disp_ord: impl IntoResettable<usize>) -> Self

Change the starting value for assigning future display orders for args.

This will be used for any arg that hasn't had Arg::display_order called.

fn arg_required_else_help(self: Self, yes: bool) -> Self

Exit gracefully if no arguments are present (e.g. $ myprog).

NOTE: subcommands count as arguments

Examples

# use clap_builder as clap;
# use clap::{Command};
Command::new("myprog")
    .arg_required_else_help(true);
fn allow_missing_positional(self: Self, yes: bool) -> Self

Allows one to implement two styles of CLIs where positionals can be used out of order.

The first example is a CLI where the second to last positional argument is optional, but the final positional argument is required. Such as $ prog [optional] <required> where one of the two following usages is allowed:

  • $ prog [optional] <required>
  • $ prog <required>

This would otherwise not be allowed. This is useful when [optional] has a default value.

Note: when using this style of "missing positionals" the final positional must be required if -- will not be used to skip to the final positional argument.

Note: This style also only allows a single positional argument to be "skipped" without the use of --. To skip more than one, see the second example.

The second example is when one wants to skip multiple optional positional arguments, and use of the -- operator is OK (but not required if all arguments will be specified anyways).

For example, imagine a CLI which has three positional arguments [foo] [bar] [baz]... where baz accepts multiple values (similar to man ARGS... style training arguments).

With this setting the following invocations are possible:

  • $ prog foo bar baz1 baz2 baz3
  • $ prog foo -- baz1 baz2 baz3
  • $ prog -- baz1 baz2 baz3

Examples

Style number one from above:

# use clap_builder as clap;
# use clap::{Command, Arg};
// Assume there is an external subcommand named "subcmd"
let m = Command::new("myprog")
    .allow_missing_positional(true)
    .arg(Arg::new("arg1"))
    .arg(Arg::new("arg2")
        .required(true))
    .get_matches_from(vec![
        "prog", "other"
    ]);

assert_eq!(m.get_one::<String>("arg1"), None);
assert_eq!(m.get_one::<String>("arg2").unwrap(), "other");

Now the same example, but using a default value for the first optional positional argument

# use clap_builder as clap;
# use clap::{Command, Arg};
// Assume there is an external subcommand named "subcmd"
let m = Command::new("myprog")
    .allow_missing_positional(true)
    .arg(Arg::new("arg1")
        .default_value("something"))
    .arg(Arg::new("arg2")
        .required(true))
    .get_matches_from(vec![
        "prog", "other"
    ]);

assert_eq!(m.get_one::<String>("arg1").unwrap(), "something");
assert_eq!(m.get_one::<String>("arg2").unwrap(), "other");

Style number two from above:

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
// Assume there is an external subcommand named "subcmd"
let m = Command::new("myprog")
    .allow_missing_positional(true)
    .arg(Arg::new("foo"))
    .arg(Arg::new("bar"))
    .arg(Arg::new("baz").action(ArgAction::Set).num_args(1..))
    .get_matches_from(vec![
        "prog", "foo", "bar", "baz1", "baz2", "baz3"
    ]);

assert_eq!(m.get_one::<String>("foo").unwrap(), "foo");
assert_eq!(m.get_one::<String>("bar").unwrap(), "bar");
assert_eq!(m.get_many::<String>("baz").unwrap().collect::<Vec<_>>(), &["baz1", "baz2", "baz3"]);

Now nofice if we don't specify foo or baz but use the -- operator.

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction};
// Assume there is an external subcommand named "subcmd"
let m = Command::new("myprog")
    .allow_missing_positional(true)
    .arg(Arg::new("foo"))
    .arg(Arg::new("bar"))
    .arg(Arg::new("baz").action(ArgAction::Set).num_args(1..))
    .get_matches_from(vec![
        "prog", "--", "baz1", "baz2", "baz3"
    ]);

assert_eq!(m.get_one::<String>("foo"), None);
assert_eq!(m.get_one::<String>("bar"), None);
assert_eq!(m.get_many::<String>("baz").unwrap().collect::<Vec<_>>(), &["baz1", "baz2", "baz3"]);

impl Command

fn get_display_name(self: &Self) -> Option<&str>

Get the name of the binary.

fn get_bin_name(self: &Self) -> Option<&str>

Get the name of the binary.

fn set_bin_name<impl Into<String>: Into<String>>(self: &mut Self, name: impl Into<String>)

Set binary name. Uses &mut self instead of self.

fn get_name(self: &Self) -> &str

Get the name of the cmd.

fn get_name_and_visible_aliases(self: &Self) -> Vec<&str>

Get all known names of the cmd (i.e. primary name and visible aliases).

fn get_version(self: &Self) -> Option<&str>

Get the version of the cmd.

fn get_long_version(self: &Self) -> Option<&str>

Get the long version of the cmd.

fn get_display_order(self: &Self) -> usize

Get the placement within help

fn get_author(self: &Self) -> Option<&str>

Get the authors of the cmd.

fn get_short_flag(self: &Self) -> Option<char>

Get the short flag of the subcommand.

fn get_long_flag(self: &Self) -> Option<&str>

Get the long flag of the subcommand.

fn get_about(self: &Self) -> Option<&StyledStr>

Get the help message specified via Command::about.

fn get_long_about(self: &Self) -> Option<&StyledStr>

Get the help message specified via Command::long_about.

fn is_flatten_help_set(self: &Self) -> bool

Get the custom section heading specified via Command::flatten_help.

fn get_next_help_heading(self: &Self) -> Option<&str>

Get the custom section heading specified via Command::next_help_heading.

fn get_visible_aliases(self: &Self) -> impl Iterator<Item = &str> + '_

Iterate through the visible aliases for this subcommand.

fn get_visible_short_flag_aliases(self: &Self) -> impl Iterator<Item = char> + '_

Iterate through the visible short aliases for this subcommand.

fn get_visible_long_flag_aliases(self: &Self) -> impl Iterator<Item = &str> + '_

Iterate through the visible long aliases for this subcommand.

fn get_all_aliases(self: &Self) -> impl Iterator<Item = &str> + '_

Iterate through the set of all the aliases for this subcommand, both visible and hidden.

fn get_all_short_flag_aliases(self: &Self) -> impl Iterator<Item = char> + '_

Iterate through the set of all the short aliases for this subcommand, both visible and hidden.

fn get_all_long_flag_aliases(self: &Self) -> impl Iterator<Item = &str> + '_

Iterate through the set of all the long aliases for this subcommand, both visible and hidden.

fn get_aliases(self: &Self) -> impl Iterator<Item = &str> + '_

Iterate through the hidden aliases for this subcommand.

fn get_color(self: &Self) -> ColorChoice

Should we color the output?

fn get_styles(self: &Self) -> &Styles

Return the current Styles for the Command

fn get_subcommands(self: &Self) -> impl Iterator<Item = &Command>

Iterate through the set of subcommands, getting a reference to each.

fn get_subcommands_mut(self: &mut Self) -> impl Iterator<Item = &mut Command>

Iterate through the set of subcommands, getting a mutable reference to each.

fn has_subcommands(self: &Self) -> bool

Returns true if this Command has subcommands.

fn get_subcommand_help_heading(self: &Self) -> Option<&str>

Returns the help heading for listing subcommands.

fn get_subcommand_value_name(self: &Self) -> Option<&str>

Returns the subcommand value name.

fn get_before_help(self: &Self) -> Option<&StyledStr>

Returns the help heading for listing subcommands.

fn get_before_long_help(self: &Self) -> Option<&StyledStr>

Returns the help heading for listing subcommands.

fn get_after_help(self: &Self) -> Option<&StyledStr>

Returns the help heading for listing subcommands.

fn get_after_long_help(self: &Self) -> Option<&StyledStr>

Returns the help heading for listing subcommands.

fn find_subcommand<impl AsRef<std::ffi::OsStr>: AsRef<std::ffi::OsStr>>(self: &Self, name: impl AsRef<std::ffi::OsStr>) -> Option<&Command>

Find subcommand such that its name or one of aliases equals name.

This does not recurse through subcommands of subcommands.

fn find_subcommand_mut<impl AsRef<std::ffi::OsStr>: AsRef<std::ffi::OsStr>>(self: &mut Self, name: impl AsRef<std::ffi::OsStr>) -> Option<&mut Command>

Find subcommand such that its name or one of aliases equals name, returning a mutable reference to the subcommand.

This does not recurse through subcommands of subcommands.

fn get_groups(self: &Self) -> impl Iterator<Item = &ArgGroup>

Iterate through the set of groups.

fn get_arguments(self: &Self) -> impl Iterator<Item = &Arg>

Iterate through the set of arguments.

fn get_positionals(self: &Self) -> impl Iterator<Item = &Arg>

Iterate through the positionals arguments.

fn get_opts(self: &Self) -> impl Iterator<Item = &Arg>

Iterate through the options.

fn get_arg_conflicts_with(self: &Self, arg: &Arg) -> Vec<&Arg>

Get a list of all arguments the given argument conflicts with.

If the provided argument is declared as global, the conflicts will be determined based on the propagation rules of global arguments.

Panics

If the given arg contains a conflict with an argument that is unknown to this Command.

fn is_no_binary_name_set(self: &Self) -> bool

Report whether Command::no_binary_name is set

fn is_dont_delimit_trailing_values_set(self: &Self) -> bool

Report whether Command::dont_delimit_trailing_values is set

fn is_disable_version_flag_set(self: &Self) -> bool

Report whether Command::disable_version_flag is set

fn is_propagate_version_set(self: &Self) -> bool

Report whether Command::propagate_version is set

fn is_next_line_help_set(self: &Self) -> bool

Report whether Command::next_line_help is set

fn is_disable_help_flag_set(self: &Self) -> bool

Report whether Command::disable_help_flag is set

fn is_disable_help_subcommand_set(self: &Self) -> bool

Report whether Command::disable_help_subcommand is set

fn is_disable_colored_help_set(self: &Self) -> bool

Report whether Command::disable_colored_help is set

fn is_arg_required_else_help_set(self: &Self) -> bool

Report whether Command::arg_required_else_help is set

fn is_allow_missing_positional_set(self: &Self) -> bool

Report whether Command::allow_missing_positional is set

fn is_hide_set(self: &Self) -> bool

Report whether Command::hide is set

fn is_subcommand_required_set(self: &Self) -> bool

Report whether Command::subcommand_required is set

fn is_allow_external_subcommands_set(self: &Self) -> bool

Report whether Command::allow_external_subcommands is set

fn get_external_subcommand_value_parser(self: &Self) -> Option<&super::ValueParser>

Configured parser for values passed to an external subcommand

Example

# use clap_builder as clap;
let cmd = clap::Command::new("raw")
    .external_subcommand_value_parser(clap::value_parser!(String));
let value_parser = cmd.get_external_subcommand_value_parser();
println!("{value_parser:?}");
fn is_args_conflicts_with_subcommands_set(self: &Self) -> bool

Report whether Command::args_conflicts_with_subcommands is set

fn is_subcommand_precedence_over_arg_set(self: &Self) -> bool

Report whether Command::subcommand_precedence_over_arg is set

fn is_subcommand_negates_reqs_set(self: &Self) -> bool

Report whether Command::subcommand_negates_reqs is set

fn is_multicall_set(self: &Self) -> bool

Report whether Command::multicall is set

impl Command

fn no_binary_name(self: Self, yes: bool) -> Self

Specifies that the parser should not assume the first argument passed is the binary name.

This is normally the case when using a "daemon" style mode. For shells / REPLs, see [Command::multicall][Command::multicall].

Examples

# use clap_builder as clap;
# use clap::{Command, arg};
let m = Command::new("myprog")
    .no_binary_name(true)
    .arg(arg!(<cmd> ... "commands to run"))
    .get_matches_from(vec!["command", "set"]);

let cmds: Vec<_> = m.get_many::<String>("cmd").unwrap().collect();
assert_eq!(cmds, ["command", "set"]);
fn ignore_errors(self: Self, yes: bool) -> Self

Try not to fail on parse errors, like missing option values.

NOTE: This choice is propagated to all child subcommands.

Examples

# use clap_builder as clap;
# use clap::{Command, arg};
let cmd = Command::new("cmd")
  .ignore_errors(true)
  .arg(arg!(-c --config <FILE> "Sets a custom config file"))
  .arg(arg!(-x --stuff <FILE> "Sets a custom stuff file"))
  .arg(arg!(f: -f "Flag"));

let r = cmd.try_get_matches_from(vec!["cmd", "-c", "file", "-f", "-x"]);

assert!(r.is_ok(), "unexpected error: {r:?}");
let m = r.unwrap();
assert_eq!(m.get_one::<String>("config").unwrap(), "file");
assert!(m.get_flag("f"));
assert_eq!(m.get_one::<String>("stuff"), None);
fn args_override_self(self: Self, yes: bool) -> Self

Replace prior occurrences of arguments rather than error

For any argument that would conflict with itself by default (e.g. ArgAction::Set, it will now override itself.

This is the equivalent to saying the foo arg using Arg::overrides_with("foo") for all defined arguments.

NOTE: This choice is propagated to all child subcommands.

fn dont_delimit_trailing_values(self: Self, yes: bool) -> Self

Disables the automatic delimiting of values after -- or when Arg::trailing_var_arg was used.

NOTE: The same thing can be done manually by setting the final positional argument to Arg::value_delimiter(None). Using this setting is safer, because it's easier to locate when making changes.

NOTE: This choice is propagated to all child subcommands.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg};
Command::new("myprog")
    .dont_delimit_trailing_values(true)
    .get_matches();
fn color(self: Self, color: ColorChoice) -> Self

Sets when to color output.

To customize how the output is styled, see Command::styles.

NOTE: This choice is propagated to all child subcommands.

NOTE: Default behaviour is ColorChoice::Auto.

Examples

# use clap_builder as clap;
# use clap::{Command, ColorChoice};
Command::new("myprog")
    .color(ColorChoice::Never)
    .get_matches();
fn styles(self: Self, styles: Styles) -> Self

Sets the Styles for terminal output

NOTE: This choice is propagated to all child subcommands.

NOTE: Default behaviour is Styles::default.

Examples

# use clap_builder as clap;
# use clap::{Command, ColorChoice, builder::styling};
const STYLES: styling::Styles = styling::Styles::styled()
    .header(styling::AnsiColor::Green.on_default().bold())
    .usage(styling::AnsiColor::Green.on_default().bold())
    .literal(styling::AnsiColor::Blue.on_default().bold())
    .placeholder(styling::AnsiColor::Cyan.on_default());
Command::new("myprog")
    .styles(STYLES)
    .get_matches();
fn term_width(self: Self, width: usize) -> Self

Sets the terminal width at which to wrap help messages.

Using 0 will ignore terminal widths and use source formatting.

Defaults to current terminal width when wrap_help feature flag is enabled. If current width cannot be determined, the default is 100.

unstable-v5 feature: Defaults to unbound, being subject to Command::max_term_width.

NOTE: This setting applies globally and not on a per-command basis.

NOTE: This requires the wrap_help feature

Examples

# use clap_builder as clap;
# use clap::Command;
Command::new("myprog")
    .term_width(80)
# ;
fn max_term_width(self: Self, width: usize) -> Self

Limit the line length for wrapping help when using the current terminal's width.

This only applies when [term_width][Command::term_width] is unset so that the current terminal's width will be used. See Command::term_width for more details.

Using 0 will ignore this, always respecting Command::term_width (default).

unstable-v5 feature: Defaults to 100.

NOTE: This setting applies globally and not on a per-command basis.

NOTE: This requires the wrap_help feature

Examples

# use clap_builder as clap;
# use clap::Command;
Command::new("myprog")
    .max_term_width(100)
# ;
fn disable_version_flag(self: Self, yes: bool) -> Self

Disables -V and --version flag.

Examples

# use clap_builder as clap;
# use clap::{Command, error::ErrorKind};
let res = Command::new("myprog")
    .version("1.0.0")
    .disable_version_flag(true)
    .try_get_matches_from(vec![
        "myprog", "--version"
    ]);
assert!(res.is_err());
assert_eq!(res.unwrap_err().kind(), ErrorKind::UnknownArgument);

You can create a custom version flag with ArgAction::Version

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction, error::ErrorKind};
let mut cmd = Command::new("myprog")
    .version("1.0.0")
    // Remove the `-V` short flag
    .disable_version_flag(true)
    .arg(
        Arg::new("version")
            .long("version")
            .action(ArgAction::Version)
            .help("Print version")
    );

let res = cmd.try_get_matches_from_mut(vec![
        "myprog", "-V"
    ]);
assert!(res.is_err());
assert_eq!(res.unwrap_err().kind(), ErrorKind::UnknownArgument);

let res = cmd.try_get_matches_from_mut(vec![
        "myprog", "--version"
    ]);
assert!(res.is_err());
assert_eq!(res.unwrap_err().kind(), ErrorKind::DisplayVersion);
fn propagate_version(self: Self, yes: bool) -> Self

Specifies to use the version of the current command for all subcommands.

Defaults to false; subcommands have independent version strings from their parents.

NOTE: This choice is propagated to all child subcommands.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg};
Command::new("myprog")
    .version("v1.1")
    .propagate_version(true)
    .subcommand(Command::new("test"))
    .get_matches();
// running `$ myprog test --version` will display
// "myprog-test v1.1"
fn next_line_help(self: Self, yes: bool) -> Self

Places the help string for all arguments and subcommands on the line after them.

NOTE: This choice is propagated to all child subcommands.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg};
Command::new("myprog")
    .next_line_help(true)
    .get_matches();
fn disable_help_flag(self: Self, yes: bool) -> Self

Disables -h and --help flag.

NOTE: This choice is propagated to all child subcommands.

Examples

# use clap_builder as clap;
# use clap::{Command, error::ErrorKind};
let res = Command::new("myprog")
    .disable_help_flag(true)
    .try_get_matches_from(vec![
        "myprog", "-h"
    ]);
assert!(res.is_err());
assert_eq!(res.unwrap_err().kind(), ErrorKind::UnknownArgument);

You can create a custom help flag with ArgAction::Help, ArgAction::HelpShort, or ArgAction::HelpLong

# use clap_builder as clap;
# use clap::{Command, Arg, ArgAction, error::ErrorKind};
let mut cmd = Command::new("myprog")
    // Change help short flag to `?`
    .disable_help_flag(true)
    .arg(
        Arg::new("help")
            .short('?')
            .long("help")
            .action(ArgAction::Help)
            .help("Print help")
    );

let res = cmd.try_get_matches_from_mut(vec![
        "myprog", "-h"
    ]);
assert!(res.is_err());
assert_eq!(res.unwrap_err().kind(), ErrorKind::UnknownArgument);

let res = cmd.try_get_matches_from_mut(vec![
        "myprog", "-?"
    ]);
assert!(res.is_err());
assert_eq!(res.unwrap_err().kind(), ErrorKind::DisplayHelp);
fn disable_help_subcommand(self: Self, yes: bool) -> Self

Disables the help subcommand.

NOTE: This choice is propagated to all child subcommands.

Examples

# use clap_builder as clap;
# use clap::{Command, error::ErrorKind};
let res = Command::new("myprog")
    .disable_help_subcommand(true)
    // Normally, creating a subcommand causes a `help` subcommand to automatically
    // be generated as well
    .subcommand(Command::new("test"))
    .try_get_matches_from(vec![
        "myprog", "help"
    ]);
assert!(res.is_err());
assert_eq!(res.unwrap_err().kind(), ErrorKind::InvalidSubcommand);
fn disable_colored_help(self: Self, yes: bool) -> Self

Disables colorized help messages.

NOTE: This choice is propagated to all child subcommands.

Examples

# use clap_builder as clap;
# use clap::Command;
Command::new("myprog")
    .disable_colored_help(true)
    .get_matches();
fn help_expected(self: Self, yes: bool) -> Self

Panic if help descriptions are omitted.

NOTE: When deriving [Parser][crate::Parser], you could instead check this at compile-time with #![deny(missing_docs)]

NOTE: This choice is propagated to all child subcommands.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg};
Command::new("myprog")
    .help_expected(true)
    .arg(
        Arg::new("foo").help("It does foo stuff")
        // As required via `help_expected`, a help message was supplied
     )
#    .get_matches();

Panics

On debug builds:

# use clap_builder as clap;
# use clap::{Command, Arg};
Command::new("myapp")
    .help_expected(true)
    .arg(
        Arg::new("foo")
        // Someone forgot to put .about("...") here
        // Since the setting `help_expected` is activated, this will lead to
        // a panic (if you are in debug mode)
    )
#   .get_matches();
fn hide_possible_values(self: Self, yes: bool) -> Self

Tells clap not to print possible values when displaying help information.

This can be useful if there are many values, or they are explained elsewhere.

To set this per argument, see [Arg::hide_possible_values][crate::Arg::hide_possible_values].

NOTE: This choice is propagated to all child subcommands.

fn infer_long_args(self: Self, yes: bool) -> Self

Allow partial matches of long arguments or their aliases.

For example, to match an argument named --test, one could use --t, --te, --tes, and --test.

NOTE: The match must not be ambiguous at all in order to succeed. i.e. to match --te to --test there could not also be another argument or alias --temp because both start with --te

NOTE: This choice is propagated to all child subcommands.

fn infer_subcommands(self: Self, yes: bool) -> Self

Allow partial matches of subcommand names and their aliases.

For example, to match a subcommand named test, one could use t, te, tes, and test.

NOTE: The match must not be ambiguous at all in order to succeed. i.e. to match te to test there could not also be a subcommand or alias temp because both start with te

WARNING: This setting can interfere with positional/free arguments, take care when designing CLIs which allow inferred subcommands and have potential positional/free arguments whose values could start with the same characters as subcommands. If this is the case, it's recommended to use settings such as Command::args_conflicts_with_subcommands in conjunction with this setting.

NOTE: This choice is propagated to all child subcommands.

Examples

# use clap_builder as clap;
# use clap::{Command, Arg};
let m = Command::new("prog")
    .infer_subcommands(true)
    .subcommand(Command::new("test"))
    .get_matches_from(vec![
        "prog", "te"
    ]);
assert_eq!(m.subcommand_name(), Some("test"));

impl Command

fn build(self: &mut Self)

Prepare for introspecting on all included Commands

Call this on the top-level Command when done building and before reading state for cases like completions, custom help output, etc.

impl Clone for Command

fn clone(self: &Self) -> Command

impl Debug for Command

fn fmt(self: &Self, f: &mut $crate::fmt::Formatter<'_>) -> $crate::fmt::Result

impl Default for Command

fn default() -> Self

impl Display for Command

fn fmt(self: &Self, f: &mut fmt::Formatter<'_>) -> fmt::Result

impl Freeze for Command

impl From for Command

fn from(cmd: &Command) -> Self

impl Index for Command

fn index(self: &Self, key: &Id) -> &<Self as >::Output

impl RefUnwindSafe for Command

impl Send for Command

impl Sync for Command

impl Unpin for Command

impl UnwindSafe for Command

impl<T> Any for Command

fn type_id(self: &Self) -> TypeId

impl<T> Borrow for Command

fn borrow(self: &Self) -> &T

impl<T> BorrowMut for Command

fn borrow_mut(self: &mut Self) -> &mut T

impl<T> CloneToUninit for Command

unsafe fn clone_to_uninit(self: &Self, dest: *mut u8)

impl<T> From for Command

fn from(t: T) -> T

Returns the argument unchanged.

impl<T> ToOwned for Command

fn to_owned(self: &Self) -> T
fn clone_into(self: &Self, target: &mut T)

impl<T> ToString for Command

fn to_string(self: &Self) -> String

impl<T, U> Into for Command

fn into(self: Self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of [From]<T> for U chooses to do.

impl<T, U> TryFrom for Command

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

impl<T, U> TryInto for Command

fn try_into(self: Self) -> Result<U, <U as TryFrom<T>>::Error>