Struct BTreeMap
struct BTreeMap<K, V, A: Allocator + Clone = crate::alloc::Global> { ... }
An ordered map based on a B-Tree.
Given a key type with a total order, an ordered map stores its entries in key order.
That means that keys must be of a type that implements the Ord trait,
such that two keys can always be compared to determine their Ordering.
Examples of keys with a total order are strings with lexicographical order,
and numbers with their natural order.
Iterators obtained from functions such as BTreeMap::iter, BTreeMap::into_iter, BTreeMap::values, or
BTreeMap::keys produce their items in key order, and take worst-case logarithmic and
amortized constant time per item returned.
It is a logic error for a key to be modified in such a way that the key's ordering relative to
any other key, as determined by the Ord trait, changes while it is in the map. This is
normally only possible through Cell, RefCell, global state, I/O, or unsafe code.
The behavior resulting from such a logic error is not specified, but will be encapsulated to the
BTreeMap that observed the logic error and not result in undefined behavior. This could
include panics, incorrect results, aborts, memory leaks, and non-termination.
Examples
use BTreeMap;
// type inference lets us omit an explicit type signature (which
// would be `BTreeMap<&str, &str>` in this example).
let mut movie_reviews = new;
// review some movies.
movie_reviews.insert;
movie_reviews.insert;
movie_reviews.insert;
movie_reviews.insert;
// check for a specific one.
if !movie_reviews.contains_key
// oops, this review has a lot of spelling mistakes, let's delete it.
movie_reviews.remove;
// look up the values associated with some keys.
let to_find = ;
for movie in &to_find
// Look up the value for a key (will panic if the key is not found).
println!;
// iterate over everything.
for in &movie_reviews
A BTreeMap with a known list of items can be initialized from an array:
use BTreeMap;
let solar_distance = from;
Entry API
BTreeMap implements an Entry API, which allows for complex
methods of getting, setting, updating and removing keys and their values:
use BTreeMap;
// type inference lets us omit an explicit type signature (which
// would be `BTreeMap<&str, u8>` in this example).
let mut player_stats = new;
// insert a key only if it doesn't already exist
player_stats.entry.or_insert;
// insert a key using a function that provides a new value only if it
// doesn't already exist
player_stats.entry.or_insert_with;
// update a key, guarding against the key possibly not being set
let stat = player_stats.entry.or_insert;
*stat += random_stat_buff;
// modify an entry before an insert with in-place mutation
player_stats.entry.and_modify.or_insert;
Background
A B-tree is (like) a binary search tree, but adapted to the natural granularity that modern machines like to consume data at. This means that each node contains an entire array of elements, instead of just a single element.
B-Trees represent a fundamental compromise between cache-efficiency and actually minimizing the amount of work performed in a search. In theory, a binary search tree (BST) is the optimal choice for a sorted map, as a perfectly balanced BST performs the theoretical minimum number of comparisons necessary to find an element (log2n). However, in practice the way this is done is very inefficient for modern computer architectures. In particular, every element is stored in its own individually heap-allocated node. This means that every single insertion triggers a heap-allocation, and every comparison is a potential cache-miss due to the indirection. Since both heap-allocations and cache-misses are notably expensive in practice, we are forced to, at the very least, reconsider the BST strategy.
A B-Tree instead makes each node contain B-1 to 2B-1 elements in a contiguous array. By doing this, we reduce the number of allocations by a factor of B, and improve cache efficiency in searches. However, this does mean that searches will have to do more comparisons on average. The precise number of comparisons depends on the node search strategy used. For optimal cache efficiency, one could search the nodes linearly. For optimal comparisons, one could search the node using binary search. As a compromise, one could also perform a linear search that initially only checks every ith element for some choice of i.
Currently, our implementation simply performs naive linear search. This provides excellent performance on small nodes of elements which are cheap to compare. However in the future we would like to further explore choosing the optimal search strategy based on the choice of B, and possibly other factors. Using linear search, searching for a random element is expected to take B * log(n) comparisons, which is generally worse than a BST. In practice, however, performance is excellent.
Implementations
impl<K, V> BTreeMap<K, V>
const fn new() -> BTreeMap<K, V>Makes a new, empty
BTreeMap.Does not allocate anything on its own.
Examples
use BTreeMap; let mut map = new; // entries can now be inserted into the empty map map.insert;
impl<K, V, A: Allocator + Clone> BTreeMap<K, V, A>
fn get<Q>(self: &Self, key: &Q) -> Option<&V> where K: Borrow<Q> + Ord, Q: Ord + ?SizedReturns a reference to the value corresponding to the key.
The key may be any borrowed form of the map's key type, but the ordering on the borrowed form must match the ordering on the key type.
Examples
use BTreeMap; let mut map = new; map.insert; assert_eq!; assert_eq!;fn get_key_value<Q>(self: &Self, k: &Q) -> Option<(&K, &V)> where K: Borrow<Q> + Ord, Q: Ord + ?SizedReturns the key-value pair corresponding to the supplied key. This is potentially useful:
- for key types where non-identical keys can be considered equal;
- for getting the
&Kstored key value from a borrowed&Qlookup key; or - for getting a reference to a key with the same lifetime as the collection.
The supplied key may be any borrowed form of the map's key type, but the ordering on the borrowed form must match the ordering on the key type.
Examples
use Ordering; use BTreeMap; let j_a = S ; let j_b = S ; let p = S ; assert_eq!; let mut map = new; map.insert; assert_eq!; assert_eq!; // the notable case assert_eq!;fn first_key_value(self: &Self) -> Option<(&K, &V)> where K: OrdReturns the first key-value pair in the map. The key in this pair is the minimum key in the map.
Examples
use BTreeMap; let mut map = new; assert_eq!; map.insert; map.insert; assert_eq!;fn first_entry(self: &mut Self) -> Option<OccupiedEntry<'_, K, V, A>> where K: OrdReturns the first entry in the map for in-place manipulation. The key of this entry is the minimum key in the map.
Examples
use BTreeMap; let mut map = new; map.insert; map.insert; if let Some = map.first_entry assert_eq!; assert_eq!;fn pop_first(self: &mut Self) -> Option<(K, V)> where K: OrdRemoves and returns the first element in the map. The key of this element is the minimum key that was in the map.
Examples
Draining elements in ascending order, while keeping a usable map each iteration.
use BTreeMap; let mut map = new; map.insert; map.insert; while let Some = map.pop_first assert!;fn last_key_value(self: &Self) -> Option<(&K, &V)> where K: OrdReturns the last key-value pair in the map. The key in this pair is the maximum key in the map.
Examples
use BTreeMap; let mut map = new; map.insert; map.insert; assert_eq!;fn last_entry(self: &mut Self) -> Option<OccupiedEntry<'_, K, V, A>> where K: OrdReturns the last entry in the map for in-place manipulation. The key of this entry is the maximum key in the map.
Examples
use BTreeMap; let mut map = new; map.insert; map.insert; if let Some = map.last_entry assert_eq!; assert_eq!;fn pop_last(self: &mut Self) -> Option<(K, V)> where K: OrdRemoves and returns the last element in the map. The key of this element is the maximum key that was in the map.
Examples
Draining elements in descending order, while keeping a usable map each iteration.
use BTreeMap; let mut map = new; map.insert; map.insert; while let Some = map.pop_last assert!;fn contains_key<Q>(self: &Self, key: &Q) -> bool where K: Borrow<Q> + Ord, Q: Ord + ?SizedReturns
trueif the map contains a value for the specified key.The key may be any borrowed form of the map's key type, but the ordering on the borrowed form must match the ordering on the key type.
Examples
use BTreeMap; let mut map = new; map.insert; assert_eq!; assert_eq!;fn get_mut<Q>(self: &mut Self, key: &Q) -> Option<&mut V> where K: Borrow<Q> + Ord, Q: Ord + ?SizedReturns a mutable reference to the value corresponding to the key.
The key may be any borrowed form of the map's key type, but the ordering on the borrowed form must match the ordering on the key type.
Examples
use BTreeMap; let mut map = new; map.insert; if let Some = map.get_mut assert_eq!;fn insert(self: &mut Self, key: K, value: V) -> Option<V> where K: OrdInserts a key-value pair into the map.
If the map did not have this key present,
Noneis returned.If the map did have this key present, the value is updated, and the old value is returned. The key is not updated, though; this matters for types that can be
==without being identical. See the module-level documentation for more.Examples
use BTreeMap; let mut map = new; assert_eq!; assert_eq!; map.insert; assert_eq!; assert_eq!;fn try_insert(self: &mut Self, key: K, value: V) -> Result<&mut V, OccupiedError<'_, K, V, A>> where K: OrdTries to insert a key-value pair into the map, and returns a mutable reference to the value in the entry.
If the map already had this key present, nothing is updated, and an error containing the occupied entry and the value is returned.
Examples
use BTreeMap; let mut map = new; assert_eq!; let err = map.try_insert.unwrap_err; assert_eq!; assert_eq!; assert_eq!;fn remove<Q>(self: &mut Self, key: &Q) -> Option<V> where K: Borrow<Q> + Ord, Q: Ord + ?SizedRemoves a key from the map, returning the value at the key if the key was previously in the map.
The key may be any borrowed form of the map's key type, but the ordering on the borrowed form must match the ordering on the key type.
Examples
use BTreeMap; let mut map = new; map.insert; assert_eq!; assert_eq!;fn remove_entry<Q>(self: &mut Self, key: &Q) -> Option<(K, V)> where K: Borrow<Q> + Ord, Q: Ord + ?SizedRemoves a key from the map, returning the stored key and value if the key was previously in the map.
The key may be any borrowed form of the map's key type, but the ordering on the borrowed form must match the ordering on the key type.
Examples
use BTreeMap; let mut map = new; map.insert; assert_eq!; assert_eq!;fn retain<F>(self: &mut Self, f: F) where K: Ord, F: FnMut(&K, &mut V) -> boolRetains only the elements specified by the predicate.
In other words, remove all pairs
(k, v)for whichf(&k, &mut v)returnsfalse. The elements are visited in ascending key order.Examples
use BTreeMap; let mut map: = .map.collect; // Keep only the elements with even-numbered keys. map.retain; assert!;fn append(self: &mut Self, other: &mut Self) where K: Ord, A: CloneMoves all elements from
otherintoself, leavingotherempty.If a key from
otheris already present inself, the respective value fromselfwill be overwritten with the respective value fromother. Similar toinsert, though, the key is not overwritten, which matters for types that can be==without being identical.Examples
use BTreeMap; let mut a = new; a.insert; a.insert; a.insert; // Note: Key (3) also present in b. let mut b = new; b.insert; // Note: Key (3) also present in a. b.insert; b.insert; a.append; assert_eq!; assert_eq!; assert_eq!; assert_eq!; assert_eq!; // Note: "c" has been overwritten. assert_eq!; assert_eq!;fn range<T, R>(self: &Self, range: R) -> Range<'_, K, V> where T: Ord + ?Sized, K: Borrow<T> + Ord, R: RangeBounds<T>Constructs a double-ended iterator over a sub-range of elements in the map. The simplest way is to use the range syntax
min..max, thusrange(min..max)will yield elements from min (inclusive) to max (exclusive). The range may also be entered as(Bound<T>, Bound<T>), so for examplerange((Excluded(4), Included(10)))will yield a left-exclusive, right-inclusive range from 4 to 10.Panics
Panics if range
start > end. Panics if rangestart == endand both bounds areExcluded.Examples
use BTreeMap; use Included; let mut map = new; map.insert; map.insert; map.insert; for in map.range assert_eq!;fn range_mut<T, R>(self: &mut Self, range: R) -> RangeMut<'_, K, V> where T: Ord + ?Sized, K: Borrow<T> + Ord, R: RangeBounds<T>Constructs a mutable double-ended iterator over a sub-range of elements in the map. The simplest way is to use the range syntax
min..max, thusrange(min..max)will yield elements from min (inclusive) to max (exclusive). The range may also be entered as(Bound<T>, Bound<T>), so for examplerange((Excluded(4), Included(10)))will yield a left-exclusive, right-inclusive range from 4 to 10.Panics
Panics if range
start > end. Panics if rangestart == endand both bounds areExcluded.Examples
use BTreeMap; let mut map: = .into; for in map.range_mut for in &mapfn entry(self: &mut Self, key: K) -> Entry<'_, K, V, A> where K: OrdGets the given key's corresponding entry in the map for in-place manipulation.
Examples
use BTreeMap; let mut count: = new; // count the number of occurrences of letters in the vec for x in assert_eq!; assert_eq!; assert_eq!;fn split_off<Q: ?Sized + Ord>(self: &mut Self, key: &Q) -> Self where K: Borrow<Q> + Ord, A: CloneSplits the collection into two at the given key. Returns everything after the given key, including the key. If the key is not present, the split will occur at the nearest greater key, or return an empty map if no such key exists.
Examples
use BTreeMap; let mut a = new; a.insert; a.insert; a.insert; a.insert; a.insert; let b = a.split_off; assert_eq!; assert_eq!; assert_eq!; assert_eq!; assert_eq!; assert_eq!; assert_eq!;fn extract_if<F, R>(self: &mut Self, range: R, pred: F) -> ExtractIf<'_, K, V, R, F, A> where K: Ord, R: RangeBounds<K>, F: FnMut(&K, &mut V) -> boolCreates an iterator that visits elements (key-value pairs) in the specified range in ascending key order and uses a closure to determine if an element should be removed.
If the closure returns
true, the element is removed from the map and yielded. If the closure returnsfalse, or panics, the element remains in the map and will not be yielded.The iterator also lets you mutate the value of each element in the closure, regardless of whether you choose to keep or remove it.
If the returned
ExtractIfis not exhausted, e.g. because it is dropped without iterating or the iteration short-circuits, then the remaining elements will be retained. Useextract_if().for_each(drop)if you do not need the returned iterator, orretainwith a negated predicate if you also do not need to restrict the range.Examples
use BTreeMap; // Splitting a map into even and odd keys, reusing the original map: let mut map: = .map.collect; let evens: = map.extract_if.collect; let odds = map; assert_eq!; assert_eq!; // Splitting a map into low and high halves, reusing the original map: let mut map: = .map.collect; let low: = map.extract_if.collect; let high = map; assert_eq!; assert_eq!;fn into_keys(self: Self) -> IntoKeys<K, V, A>Creates a consuming iterator visiting all the keys, in sorted order. The map cannot be used after calling this. The iterator element type is
K.Examples
use BTreeMap; let mut a = new; a.insert; a.insert; let keys: = a.into_keys.collect; assert_eq!;fn into_values(self: Self) -> IntoValues<K, V, A>Creates a consuming iterator visiting all the values, in order by key. The map cannot be used after calling this. The iterator element type is
V.Examples
use BTreeMap; let mut a = new; a.insert; a.insert; let values: = a.into_values.collect; assert_eq!;
impl<K, V, A: Allocator + Clone> BTreeMap<K, V, A>
fn clear(self: &mut Self)Clears the map, removing all elements.
Examples
use BTreeMap; let mut a = new; a.insert; a.clear; assert!;const fn new_in(alloc: A) -> BTreeMap<K, V, A>Makes a new empty BTreeMap with a reasonable choice for B.
Examples
# # use BTreeMap; use Global; let mut map = new_in; // entries can now be inserted into the empty map map.insert;
impl<K, V, A: Allocator + Clone> BTreeMap<K, V, A>
fn iter(self: &Self) -> Iter<'_, K, V>Gets an iterator over the entries of the map, sorted by key.
Examples
use BTreeMap; let mut map = new; map.insert; map.insert; map.insert; for in map.iter let = map.iter.next.unwrap; assert_eq!;fn iter_mut(self: &mut Self) -> IterMut<'_, K, V>Gets a mutable iterator over the entries of the map, sorted by key.
Examples
use BTreeMap; let mut map = from; // add 10 to the value if the key isn't "a" for in map.iter_mutfn keys(self: &Self) -> Keys<'_, K, V>Gets an iterator over the keys of the map, in sorted order.
Examples
use BTreeMap; let mut a = new; a.insert; a.insert; let keys: = a.keys.cloned.collect; assert_eq!;fn values(self: &Self) -> Values<'_, K, V>Gets an iterator over the values of the map, in order by key.
Examples
use BTreeMap; let mut a = new; a.insert; a.insert; let values: = a.values.cloned.collect; assert_eq!;fn values_mut(self: &mut Self) -> ValuesMut<'_, K, V>Gets a mutable iterator over the values of the map, in order by key.
Examples
use BTreeMap; let mut a = new; a.insert; a.insert; for value in a.values_mut let values: = a.values.cloned.collect; assert_eq!;const fn len(self: &Self) -> usizeReturns the number of elements in the map.
Examples
use BTreeMap; let mut a = new; assert_eq!; a.insert; assert_eq!;const fn is_empty(self: &Self) -> boolReturns
trueif the map contains no elements.Examples
use BTreeMap; let mut a = new; assert!; a.insert; assert!;fn lower_bound<Q>(self: &Self, bound: Bound<&Q>) -> Cursor<'_, K, V> where K: Borrow<Q> + Ord, Q: Ord + ?SizedReturns a
Cursorpointing at the gap before the smallest key greater than the given bound.Passing
Bound::Included(x)will return a cursor pointing to the gap before the smallest key greater than or equal tox.Passing
Bound::Excluded(x)will return a cursor pointing to the gap before the smallest key greater thanx.Passing
Bound::Unboundedwill return a cursor pointing to the gap before the smallest key in the map.Examples
use BTreeMap; use Bound; let map = from; let cursor = map.lower_bound; assert_eq!; assert_eq!; let cursor = map.lower_bound; assert_eq!; assert_eq!; let cursor = map.lower_bound; assert_eq!; assert_eq!;fn lower_bound_mut<Q>(self: &mut Self, bound: Bound<&Q>) -> CursorMut<'_, K, V, A> where K: Borrow<Q> + Ord, Q: Ord + ?SizedReturns a
CursorMutpointing at the gap before the smallest key greater than the given bound.Passing
Bound::Included(x)will return a cursor pointing to the gap before the smallest key greater than or equal tox.Passing
Bound::Excluded(x)will return a cursor pointing to the gap before the smallest key greater thanx.Passing
Bound::Unboundedwill return a cursor pointing to the gap before the smallest key in the map.Examples
use BTreeMap; use Bound; let mut map = from; let mut cursor = map.lower_bound_mut; assert_eq!; assert_eq!; let mut cursor = map.lower_bound_mut; assert_eq!; assert_eq!; let mut cursor = map.lower_bound_mut; assert_eq!; assert_eq!;fn upper_bound<Q>(self: &Self, bound: Bound<&Q>) -> Cursor<'_, K, V> where K: Borrow<Q> + Ord, Q: Ord + ?SizedReturns a
Cursorpointing at the gap after the greatest key smaller than the given bound.Passing
Bound::Included(x)will return a cursor pointing to the gap after the greatest key smaller than or equal tox.Passing
Bound::Excluded(x)will return a cursor pointing to the gap after the greatest key smaller thanx.Passing
Bound::Unboundedwill return a cursor pointing to the gap after the greatest key in the map.Examples
use BTreeMap; use Bound; let map = from; let cursor = map.upper_bound; assert_eq!; assert_eq!; let cursor = map.upper_bound; assert_eq!; assert_eq!; let cursor = map.upper_bound; assert_eq!; assert_eq!;fn upper_bound_mut<Q>(self: &mut Self, bound: Bound<&Q>) -> CursorMut<'_, K, V, A> where K: Borrow<Q> + Ord, Q: Ord + ?SizedReturns a
CursorMutpointing at the gap after the greatest key smaller than the given bound.Passing
Bound::Included(x)will return a cursor pointing to the gap after the greatest key smaller than or equal tox.Passing
Bound::Excluded(x)will return a cursor pointing to the gap after the greatest key smaller thanx.Passing
Bound::Unboundedwill return a cursor pointing to the gap after the greatest key in the map.Examples
use BTreeMap; use Bound; let mut map = from; let mut cursor = map.upper_bound_mut; assert_eq!; assert_eq!; let mut cursor = map.upper_bound_mut; assert_eq!; assert_eq!; let mut cursor = map.upper_bound_mut; assert_eq!; assert_eq!;
impl<'a, K: Ord + Copy, V: Copy, A: Allocator + Clone> Extend for BTreeMap<K, V, A>
fn extend<I: IntoIterator<Item = (&'a K, &'a V)>>(self: &mut Self, iter: I)fn extend_one(self: &mut Self, (k, v): (&'a K, &'a V))
impl<K, Q, V, A: Allocator + Clone> Index for BTreeMap<K, V, A>
fn index(self: &Self, key: &Q) -> &VReturns a reference to the value corresponding to the supplied key.
Panics
Panics if the key is not present in the
BTreeMap.
impl<K, V> Default for BTreeMap<K, V>
fn default() -> BTreeMap<K, V>Creates an empty
BTreeMap.
impl<K, V, A> Freeze for BTreeMap<K, V, A>
impl<K, V, A> RefUnwindSafe for BTreeMap<K, V, A>
impl<K, V, A> Send for BTreeMap<K, V, A>
impl<K, V, A> Sync for BTreeMap<K, V, A>
impl<K, V, A> Unpin for BTreeMap<K, V, A>
impl<K, V, A> UnwindSafe for BTreeMap<K, V, A>
impl<K, V, A: Allocator + Clone> Drop for BTreeMap<K, V, A>
fn drop(self: &mut Self)
impl<K, V, A: Allocator + Clone> IntoIterator for BTreeMap<K, V, A>
fn into_iter(self: Self) -> IntoIter<K, V, A>Gets an owning iterator over the entries of the map, sorted by key.
impl<K: Clone, V: Clone, A: Allocator + Clone> Clone for BTreeMap<K, V, A>
fn clone(self: &Self) -> BTreeMap<K, V, A>
impl<K: Debug, V: Debug, A: Allocator + Clone> Debug for BTreeMap<K, V, A>
fn fmt(self: &Self, f: &mut fmt::Formatter<'_>) -> fmt::Result
impl<K: Eq, V: Eq, A: Allocator + Clone> Eq for BTreeMap<K, V, A>
impl<K: Hash, V: Hash, A: Allocator + Clone> Hash for BTreeMap<K, V, A>
fn hash<H: Hasher>(self: &Self, state: &mut H)
impl<K: Ord, V> FromIterator for BTreeMap<K, V>
fn from_iter<T: IntoIterator<Item = (K, V)>>(iter: T) -> BTreeMap<K, V>Constructs a
BTreeMap<K, V>from an iterator of key-value pairs.If the iterator produces any pairs with equal keys, all but one of the corresponding values will be dropped.
impl<K: Ord, V, A: Allocator + Clone> Extend for BTreeMap<K, V, A>
fn extend<T: IntoIterator<Item = (K, V)>>(self: &mut Self, iter: T)fn extend_one(self: &mut Self, (k, v): (K, V))
impl<K: Ord, V, N: usize> From for BTreeMap<K, V>
fn from(arr: [(K, V); N]) -> SelfConverts a
[(K, V); N]into aBTreeMap<K, V>.If any entries in the array have equal keys, all but one of the corresponding values will be dropped.
use BTreeMap; let map1 = from; let map2: = .into; assert_eq!;
impl<K: Ord, V: Ord, A: Allocator + Clone> Ord for BTreeMap<K, V, A>
fn cmp(self: &Self, other: &BTreeMap<K, V, A>) -> Ordering
impl<K: PartialEq, V: PartialEq, A: Allocator + Clone> PartialEq for BTreeMap<K, V, A>
fn eq(self: &Self, other: &BTreeMap<K, V, A>) -> bool
impl<K: PartialOrd, V: PartialOrd, A: Allocator + Clone> PartialOrd for BTreeMap<K, V, A>
fn partial_cmp(self: &Self, other: &BTreeMap<K, V, A>) -> Option<Ordering>
impl<T> Any for BTreeMap<K, V, A>
fn type_id(self: &Self) -> TypeId
impl<T> Borrow for BTreeMap<K, V, A>
fn borrow(self: &Self) -> &T
impl<T> BorrowMut for BTreeMap<K, V, A>
fn borrow_mut(self: &mut Self) -> &mut T
impl<T> CloneToUninit for BTreeMap<K, V, A>
unsafe fn clone_to_uninit(self: &Self, dest: *mut u8)
impl<T> From for BTreeMap<K, V, A>
fn from(t: T) -> TReturns the argument unchanged.
impl<T> ToOwned for BTreeMap<K, V, A>
fn to_owned(self: &Self) -> Tfn clone_into(self: &Self, target: &mut T)
impl<T, U> Into for BTreeMap<K, V, A>
fn into(self: Self) -> UCalls
U::from(self).That is, this conversion is whatever the implementation of
[From]<T> for Uchooses to do.
impl<T, U> TryFrom for BTreeMap<K, V, A>
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
impl<T, U> TryInto for BTreeMap<K, V, A>
fn try_into(self: Self) -> Result<U, <U as TryFrom<T>>::Error>