jiff/zoned.rs
1use core::time::Duration as UnsignedDuration;
2
3use crate::{
4 civil::{
5 Date, DateTime, DateTimeRound, DateTimeWith, Era, ISOWeekDate, Time,
6 Weekday,
7 },
8 duration::{Duration, SDuration},
9 error::{err, Error, ErrorContext},
10 fmt::{
11 self,
12 temporal::{self, DEFAULT_DATETIME_PARSER},
13 },
14 tz::{AmbiguousOffset, Disambiguation, Offset, OffsetConflict, TimeZone},
15 util::{
16 rangeint::{RInto, TryRFrom},
17 t::{self, ZonedDayNanoseconds, C},
18 },
19 RoundMode, SignedDuration, Span, SpanRound, Timestamp, Unit,
20};
21
22/// A time zone aware instant in time.
23///
24/// A `Zoned` value can be thought of as the combination of following types,
25/// all rolled into one:
26///
27/// * A [`Timestamp`] for indicating the precise instant in time.
28/// * A [`DateTime`] for indicating the "civil" calendar date and clock time.
29/// * A [`TimeZone`] for indicating how to apply time zone transitions while
30/// performing arithmetic.
31///
32/// In particular, a `Zoned` is specifically designed for dealing with
33/// datetimes in a time zone aware manner. Here are some highlights:
34///
35/// * Arithmetic automatically adjusts for daylight saving time (DST), using
36/// the rules defined by [RFC 5545].
37/// * Creating new `Zoned` values from other `Zoned` values via [`Zoned::with`]
38/// by changing clock time (e.g., `02:30`) can do so without worrying that the
39/// time will be invalid due to DST transitions.
40/// * An approximate superset of the [`DateTime`] API is offered on `Zoned`,
41/// but where each of its operations take time zone into account when
42/// appropriate. For example, [`DateTime::start_of_day`] always returns a
43/// datetime set to midnight, but [`Zoned::start_of_day`] returns the first
44/// instant of a day, which might not be midnight if there is a time zone
45/// transition at midnight.
46/// * When using a `Zoned`, it is easy to switch between civil datetime (the
47/// day you see on the calendar and the time you see on the clock) and Unix
48/// time (a precise instant in time). Indeed, a `Zoned` can be losslessy
49/// converted to any other datetime type in this crate: [`Timestamp`],
50/// [`DateTime`], [`Date`] and [`Time`].
51/// * A `Zoned` value can be losslessly serialized and deserialized, via
52/// [serde], by adhering to [RFC 8536]. An example of a serialized zoned
53/// datetime is `2024-07-04T08:39:00-04:00[America/New_York]`.
54/// * Since a `Zoned` stores a [`TimeZone`] itself, multiple time zone aware
55/// operations can be chained together without repeatedly specifying the time
56/// zone.
57///
58/// [RFC 5545]: https://datatracker.ietf.org/doc/html/rfc5545
59/// [RFC 8536]: https://datatracker.ietf.org/doc/html/rfc8536
60/// [serde]: https://serde.rs/
61///
62/// # Parsing and printing
63///
64/// The `Zoned` type provides convenient trait implementations of
65/// [`std::str::FromStr`] and [`std::fmt::Display`]:
66///
67/// ```
68/// use jiff::Zoned;
69///
70/// let zdt: Zoned = "2024-06-19 15:22[America/New_York]".parse()?;
71/// // Notice that the second component and the offset have both been added.
72/// assert_eq!(zdt.to_string(), "2024-06-19T15:22:00-04:00[America/New_York]");
73///
74/// // While in the above case the datetime is unambiguous, in some cases, it
75/// // can be ambiguous. In these cases, an offset is required to correctly
76/// // roundtrip a zoned datetime. For example, on 2024-11-03 in New York, the
77/// // 1 o'clock hour was repeated twice, corresponding to the end of daylight
78/// // saving time.
79/// //
80/// // So because of the ambiguity, this time could be in offset -04 (the first
81/// // time 1 o'clock is on the clock) or it could be -05 (the second time
82/// // 1 o'clock is on the clock, corresponding to the end of DST).
83/// //
84/// // By default, parsing uses a "compatible" strategy for resolving all cases
85/// // of ambiguity: in forward transitions (gaps), the later time is selected.
86/// // And in backward transitions (folds), the earlier time is selected.
87/// let zdt: Zoned = "2024-11-03 01:30[America/New_York]".parse()?;
88/// // As we can see, since this was a fold, the earlier time was selected
89/// // because the -04 offset is the first time 1 o'clock appears on the clock.
90/// assert_eq!(zdt.to_string(), "2024-11-03T01:30:00-04:00[America/New_York]");
91/// // But if we changed the offset and re-serialized, the only thing that
92/// // changes is, indeed, the offset. This demonstrates that the offset is
93/// // key to ensuring lossless serialization.
94/// let zdt = zdt.with().offset(jiff::tz::offset(-5)).build()?;
95/// assert_eq!(zdt.to_string(), "2024-11-03T01:30:00-05:00[America/New_York]");
96///
97/// # Ok::<(), Box<dyn std::error::Error>>(())
98/// ```
99///
100/// A `Zoned` can also be parsed from just a time zone aware date (but the
101/// time zone annotation is still required). In this case, the time is set to
102/// midnight:
103///
104/// ```
105/// use jiff::Zoned;
106///
107/// let zdt: Zoned = "2024-06-19[America/New_York]".parse()?;
108/// assert_eq!(zdt.to_string(), "2024-06-19T00:00:00-04:00[America/New_York]");
109/// // ... although it isn't always midnight, in the case of a time zone
110/// // transition at midnight!
111/// let zdt: Zoned = "2015-10-18[America/Sao_Paulo]".parse()?;
112/// assert_eq!(zdt.to_string(), "2015-10-18T01:00:00-02:00[America/Sao_Paulo]");
113///
114/// # Ok::<(), Box<dyn std::error::Error>>(())
115/// ```
116///
117/// For more information on the specific format supported, see the
118/// [`fmt::temporal`](crate::fmt::temporal) module documentation.
119///
120/// # Leap seconds
121///
122/// Jiff does not support leap seconds. Jiff behaves as if they don't exist.
123/// The only exception is that if one parses a datetime with a second component
124/// of `60`, then it is automatically constrained to `59`:
125///
126/// ```
127/// use jiff::{civil::date, Zoned};
128///
129/// let zdt: Zoned = "2016-12-31 23:59:60[Australia/Tasmania]".parse()?;
130/// assert_eq!(zdt.datetime(), date(2016, 12, 31).at(23, 59, 59, 0));
131///
132/// # Ok::<(), Box<dyn std::error::Error>>(())
133/// ```
134///
135/// # Comparisons
136///
137/// The `Zoned` type provides both `Eq` and `Ord` trait implementations to
138/// facilitate easy comparisons. When a zoned datetime `zdt1` occurs before a
139/// zoned datetime `zdt2`, then `zdt1 < zdt2`. For example:
140///
141/// ```
142/// use jiff::civil::date;
143///
144/// let zdt1 = date(2024, 3, 11).at(1, 25, 15, 0).in_tz("America/New_York")?;
145/// let zdt2 = date(2025, 1, 31).at(0, 30, 0, 0).in_tz("America/New_York")?;
146/// assert!(zdt1 < zdt2);
147///
148/// # Ok::<(), Box<dyn std::error::Error>>(())
149/// ```
150///
151/// Note that `Zoned` comparisons only consider the precise instant in time.
152/// The civil datetime or even the time zone are completely ignored. So it's
153/// possible for a zoned datetime to be less than another even if it's civil
154/// datetime is bigger:
155///
156/// ```
157/// use jiff::civil::date;
158///
159/// let zdt1 = date(2024, 7, 4).at(12, 0, 0, 0).in_tz("America/New_York")?;
160/// let zdt2 = date(2024, 7, 4).at(11, 0, 0, 0).in_tz("America/Los_Angeles")?;
161/// assert!(zdt1 < zdt2);
162/// // But if we only compare civil datetime, the result is flipped:
163/// assert!(zdt1.datetime() > zdt2.datetime());
164///
165/// # Ok::<(), Box<dyn std::error::Error>>(())
166/// ```
167///
168/// The same applies for equality as well. Two `Zoned` values are equal, even
169/// if they have different time zones, when the instant in time is identical:
170///
171/// ```
172/// use jiff::civil::date;
173///
174/// let zdt1 = date(2024, 7, 4).at(12, 0, 0, 0).in_tz("America/New_York")?;
175/// let zdt2 = date(2024, 7, 4).at(9, 0, 0, 0).in_tz("America/Los_Angeles")?;
176/// assert_eq!(zdt1, zdt2);
177///
178/// # Ok::<(), Box<dyn std::error::Error>>(())
179/// ```
180///
181/// (Note that this is diifferent from
182/// [Temporal's `ZonedDateTime.equals`][temporal-equals] comparison, which will
183/// take time zone into account for equality. This is because `Eq` and `Ord`
184/// trait implementations must be consistent in Rust. If you need Temporal's
185/// behavior, then use `zdt1 == zdt2 && zdt1.time_zone() == zdt2.time_zone()`.)
186///
187/// [temporal-equals]: https://tc39.es/proposal-temporal/docs/zoneddatetime.html#equals
188///
189/// # Arithmetic
190///
191/// This type provides routines for adding and subtracting spans of time, as
192/// well as computing the span of time between two `Zoned` values. These
193/// operations take time zones into account.
194///
195/// For adding or subtracting spans of time, one can use any of the following
196/// routines:
197///
198/// * [`Zoned::checked_add`] or [`Zoned::checked_sub`] for checked
199/// arithmetic.
200/// * [`Zoned::saturating_add`] or [`Zoned::saturating_sub`] for
201/// saturating arithmetic.
202///
203/// Additionally, checked arithmetic is available via the `Add` and `Sub`
204/// trait implementations. When the result overflows, a panic occurs.
205///
206/// ```
207/// use jiff::{civil::date, ToSpan};
208///
209/// let start = date(2024, 2, 25).at(15, 45, 0, 0).in_tz("America/New_York")?;
210/// // `Zoned` doesn't implement `Copy`, so we use `&start` instead of `start`.
211/// let one_week_later = &start + 1.weeks();
212/// assert_eq!(one_week_later.datetime(), date(2024, 3, 3).at(15, 45, 0, 0));
213///
214/// # Ok::<(), Box<dyn std::error::Error>>(())
215/// ```
216///
217/// One can compute the span of time between two zoned datetimes using either
218/// [`Zoned::until`] or [`Zoned::since`]. It's also possible to subtract
219/// two `Zoned` values directly via a `Sub` trait implementation:
220///
221/// ```
222/// use jiff::{civil::date, ToSpan};
223///
224/// let zdt1 = date(2024, 5, 3).at(23, 30, 0, 0).in_tz("America/New_York")?;
225/// let zdt2 = date(2024, 2, 25).at(7, 0, 0, 0).in_tz("America/New_York")?;
226/// assert_eq!(&zdt1 - &zdt2, 1647.hours().minutes(30).fieldwise());
227///
228/// # Ok::<(), Box<dyn std::error::Error>>(())
229/// ```
230///
231/// The `until` and `since` APIs are polymorphic and allow re-balancing and
232/// rounding the span returned. For example, the default largest unit is hours
233/// (as exemplified above), but we can ask for bigger units:
234///
235/// ```
236/// use jiff::{civil::date, ToSpan, Unit};
237///
238/// let zdt1 = date(2024, 5, 3).at(23, 30, 0, 0).in_tz("America/New_York")?;
239/// let zdt2 = date(2024, 2, 25).at(7, 0, 0, 0).in_tz("America/New_York")?;
240/// assert_eq!(
241/// zdt1.since((Unit::Year, &zdt2))?,
242/// 2.months().days(7).hours(16).minutes(30).fieldwise(),
243/// );
244///
245/// # Ok::<(), Box<dyn std::error::Error>>(())
246/// ```
247///
248/// Or even round the span returned:
249///
250/// ```
251/// use jiff::{civil::date, RoundMode, ToSpan, Unit, ZonedDifference};
252///
253/// let zdt1 = date(2024, 5, 3).at(23, 30, 0, 0).in_tz("America/New_York")?;
254/// let zdt2 = date(2024, 2, 25).at(7, 0, 0, 0).in_tz("America/New_York")?;
255/// assert_eq!(
256/// zdt1.since(
257/// ZonedDifference::new(&zdt2)
258/// .smallest(Unit::Day)
259/// .largest(Unit::Year),
260/// )?,
261/// 2.months().days(7).fieldwise(),
262/// );
263/// // `ZonedDifference` uses truncation as a rounding mode by default,
264/// // but you can set the rounding mode to break ties away from zero:
265/// assert_eq!(
266/// zdt1.since(
267/// ZonedDifference::new(&zdt2)
268/// .smallest(Unit::Day)
269/// .largest(Unit::Year)
270/// .mode(RoundMode::HalfExpand),
271/// )?,
272/// // Rounds up to 8 days.
273/// 2.months().days(8).fieldwise(),
274/// );
275///
276/// # Ok::<(), Box<dyn std::error::Error>>(())
277/// ```
278///
279/// # Rounding
280///
281/// A `Zoned` can be rounded based on a [`ZonedRound`] configuration of
282/// smallest units, rounding increment and rounding mode. Here's an example
283/// showing how to round to the nearest third hour:
284///
285/// ```
286/// use jiff::{civil::date, Unit, ZonedRound};
287///
288/// let zdt = date(2024, 6, 19)
289/// .at(16, 27, 29, 999_999_999)
290/// .in_tz("America/New_York")?;
291/// assert_eq!(
292/// zdt.round(ZonedRound::new().smallest(Unit::Hour).increment(3))?,
293/// date(2024, 6, 19).at(15, 0, 0, 0).in_tz("America/New_York")?,
294/// );
295/// // Or alternatively, make use of the `From<(Unit, i64)> for ZonedRound`
296/// // trait implementation:
297/// assert_eq!(
298/// zdt.round((Unit::Hour, 3))?,
299/// date(2024, 6, 19).at(15, 0, 0, 0).in_tz("America/New_York")?,
300/// );
301///
302/// # Ok::<(), Box<dyn std::error::Error>>(())
303/// ```
304///
305/// See [`Zoned::round`] for more details.
306#[derive(Clone)]
307pub struct Zoned {
308 inner: ZonedInner,
309}
310
311/// The representation of a `Zoned`.
312///
313/// This uses 4 different things: a timestamp, a datetime, an offset and a
314/// time zone. This in turn makes `Zoned` a bit beefy (40 bytes on x86-64),
315/// but I think this is probably the right trade off. (At time of writing,
316/// 2024-07-04.)
317///
318/// Technically speaking, the only essential fields here are timestamp and time
319/// zone. The datetime and offset can both be unambiguously _computed_ from the
320/// combination of a timestamp and a time zone. Indeed, just the timestamp and
321/// the time zone was my initial representation. But as I developed the API of
322/// this type, it became clearer that we should probably store the datetime and
323/// offset as well.
324///
325/// The main issue here is that in order to compute the datetime from a
326/// timestamp and a time zone, you need to do two things:
327///
328/// 1. First, compute the offset. This means doing a binary search on the TZif
329/// data for the transition (or closest transition) matching the timestamp.
330/// 2. Second, use the offset (from UTC) to convert the timestamp into a civil
331/// datetime. This involves a "Unix time to Unix epoch days" conversion that
332/// requires some heavy arithmetic.
333///
334/// So if we don't store the datetime or offset, then we need to compute them
335/// any time we need them. And the Temporal design really pushes heavily in
336/// favor of treating the "instant in time" and "civil datetime" as two sides
337/// to the same coin. That means users are very encouraged to just use whatever
338/// they need. So if we are always computing the offset and datetime whenever
339/// we need them, we're potentially punishing users for working with civil
340/// datetimes. It just doesn't feel like the right trade-off.
341///
342/// Instead, my idea here is that, ultimately, `Zoned` is meant to provide
343/// a one-stop shop for "doing the right thing." Presenting that unified
344/// abstraction comes with costs. And that if we want to expose cheaper ways
345/// of performing at least some of the operations on `Zoned` by making fewer
346/// assumptions, then we should probably endeavor to do that by exposing a
347/// lower level API. I'm not sure what that would look like, so I think it
348/// should be driven by use cases.
349///
350/// Some other things I considered:
351///
352/// * Use `Zoned(Arc<ZonedInner>)` to make `Zoned` pointer-sized. But I didn't
353/// like this because it implies creating any new `Zoned` value requires an
354/// allocation. Since a `TimeZone` internally uses an `Arc`, all it requires
355/// today is a chunky memcpy and an atomic ref count increment.
356/// * Use `OnceLock` shenanigans for the datetime and offset fields. This would
357/// make `Zoned` even beefier and I wasn't totally clear how much this would
358/// save us. And it would impose some (probably small) cost on every datetime
359/// or offset access.
360/// * Use a radically different design that permits a `Zoned` to be `Copy`.
361/// I personally find it deeply annoying that `Zoned` is both the "main"
362/// datetime type in Jiff and also the only one that doesn't implement `Copy`.
363/// I explored some designs, but I couldn't figure out how to make it work in
364/// a satisfying way. The main issue here is `TimeZone`. A `TimeZone` is a huge
365/// chunk of data and the ergonomics of the `Zoned` API require being able to
366/// access a `TimeZone` without the caller providing it explicitly. So to me,
367/// the only real alternative here is to use some kind of integer handle into
368/// a global time zone database. But now you all of a sudden need to worry
369/// about synchronization for every time zone access and plausibly also garbage
370/// collection. And this also complicates matters for using custom time zone
371/// databases. So I ultimately came down on "Zoned is not Copy" as the least
372/// awful choice. *heavy sigh*
373#[derive(Clone)]
374struct ZonedInner {
375 timestamp: Timestamp,
376 datetime: DateTime,
377 offset: Offset,
378 time_zone: TimeZone,
379}
380
381impl Zoned {
382 /// Returns the current system time in this system's time zone.
383 ///
384 /// If the system's time zone could not be found, then [`TimeZone::UTC`]
385 /// is used instead. When this happens, a `WARN` level log message will
386 /// be emitted. (To see it, one will need to install a logger that is
387 /// compatible with the `log` crate and enable Jiff's `logging` Cargo
388 /// feature.)
389 ///
390 /// To create a `Zoned` value for the current time in a particular
391 /// time zone other than the system default time zone, use
392 /// `Timestamp::now().to_zoned(time_zone)`. In particular, using
393 /// [`Timestamp::now`] avoids the work required to fetch the system time
394 /// zone if you did `Zoned::now().with_time_zone(time_zone)`.
395 ///
396 /// # Panics
397 ///
398 /// This panics if the system clock is set to a time value outside of the
399 /// range `-009999-01-01T00:00:00Z..=9999-12-31T11:59:59.999999999Z`. The
400 /// justification here is that it is reasonable to expect the system clock
401 /// to be set to a somewhat sane, if imprecise, value.
402 ///
403 /// If you want to get the current Unix time fallibly, use
404 /// [`Zoned::try_from`] with a `std::time::SystemTime` as input.
405 ///
406 /// This may also panic when `SystemTime::now()` itself panics. The most
407 /// common context in which this happens is on the `wasm32-unknown-unknown`
408 /// target. If you're using that target in the context of the web (for
409 /// example, via `wasm-pack`), and you're an application, then you should
410 /// enable Jiff's `js` feature. This will automatically instruct Jiff in
411 /// this very specific circumstance to execute JavaScript code to determine
412 /// the current time from the web browser.
413 ///
414 /// # Example
415 ///
416 /// ```
417 /// use jiff::{Timestamp, Zoned};
418 ///
419 /// assert!(Zoned::now().timestamp() > Timestamp::UNIX_EPOCH);
420 /// ```
421 #[cfg(feature = "std")]
422 #[inline]
423 pub fn now() -> Zoned {
424 Zoned::try_from(crate::now::system_time())
425 .expect("system time is valid")
426 }
427
428 /// Creates a new `Zoned` value from a specific instant in a particular
429 /// time zone. The time zone determines how to render the instant in time
430 /// into civil time. (Also known as "clock," "wall," "local" or "naive"
431 /// time.)
432 ///
433 /// To create a new zoned datetime from another with a particular field
434 /// value, use the methods on [`ZonedWith`] via [`Zoned::with`].
435 ///
436 /// # Construction from civil time
437 ///
438 /// A `Zoned` value can also be created from a civil time via the following
439 /// methods:
440 ///
441 /// * [`DateTime::in_tz`] does a Time Zone Database lookup given a time
442 /// zone name string.
443 /// * [`DateTime::to_zoned`] accepts a `TimeZone`.
444 /// * [`Date::in_tz`] does a Time Zone Database lookup given a time zone
445 /// name string and attempts to use midnight as the clock time.
446 /// * [`Date::to_zoned`] accepts a `TimeZone` and attempts to use midnight
447 /// as the clock time.
448 ///
449 /// Whenever one is converting from civil time to a zoned
450 /// datetime, it is possible for the civil time to be ambiguous.
451 /// That is, it might be a clock reading that could refer to
452 /// multiple possible instants in time, or it might be a clock
453 /// reading that never exists. The above routines will use a
454 /// [`Disambiguation::Compatible`]
455 /// strategy to automatically resolve these corner cases.
456 ///
457 /// If one wants to control how ambiguity is resolved (including
458 /// by returning an error), use [`TimeZone::to_ambiguous_zoned`]
459 /// and select the desired strategy via a method on
460 /// [`AmbiguousZoned`](crate::tz::AmbiguousZoned).
461 ///
462 /// # Example: What was the civil time in Tasmania at the Unix epoch?
463 ///
464 /// ```
465 /// use jiff::{tz::TimeZone, Timestamp, Zoned};
466 ///
467 /// let tz = TimeZone::get("Australia/Tasmania")?;
468 /// let zdt = Zoned::new(Timestamp::UNIX_EPOCH, tz);
469 /// assert_eq!(
470 /// zdt.to_string(),
471 /// "1970-01-01T11:00:00+11:00[Australia/Tasmania]",
472 /// );
473 ///
474 /// # Ok::<(), Box<dyn std::error::Error>>(())
475 /// ```
476 ///
477 /// # Example: What was the civil time in New York when World War 1 ended?
478 ///
479 /// ```
480 /// use jiff::civil::date;
481 ///
482 /// let zdt1 = date(1918, 11, 11).at(11, 0, 0, 0).in_tz("Europe/Paris")?;
483 /// let zdt2 = zdt1.in_tz("America/New_York")?;
484 /// assert_eq!(
485 /// zdt2.to_string(),
486 /// "1918-11-11T06:00:00-05:00[America/New_York]",
487 /// );
488 ///
489 /// # Ok::<(), Box<dyn std::error::Error>>(())
490 /// ```
491 #[inline]
492 pub fn new(timestamp: Timestamp, time_zone: TimeZone) -> Zoned {
493 let offset = time_zone.to_offset(timestamp);
494 let datetime = offset.to_datetime(timestamp);
495 let inner = ZonedInner { timestamp, datetime, offset, time_zone };
496 Zoned { inner }
497 }
498
499 /// A crate internal constructor for building a `Zoned` from its
500 /// constituent parts.
501 ///
502 /// This should basically never be exposed, because it can be quite tricky
503 /// to get the parts correct.
504 ///
505 /// See `civil::DateTime::to_zoned` for a use case for this routine. (Why
506 /// do you think? Perf!)
507 #[inline]
508 pub(crate) fn from_parts(
509 timestamp: Timestamp,
510 time_zone: TimeZone,
511 offset: Offset,
512 datetime: DateTime,
513 ) -> Zoned {
514 let inner = ZonedInner { timestamp, datetime, offset, time_zone };
515 Zoned { inner }
516 }
517
518 /// Create a builder for constructing a new `DateTime` from the fields of
519 /// this datetime.
520 ///
521 /// See the methods on [`ZonedWith`] for the different ways one can set
522 /// the fields of a new `Zoned`.
523 ///
524 /// Note that this doesn't support changing the time zone. If you want a
525 /// `Zoned` value of the same instant but in a different time zone, use
526 /// [`Zoned::in_tz`] or [`Zoned::with_time_zone`]. If you want a `Zoned`
527 /// value of the same civil datetime (assuming it isn't ambiguous) but in
528 /// a different time zone, then use [`Zoned::datetime`] followed by
529 /// [`DateTime::in_tz`] or [`DateTime::to_zoned`].
530 ///
531 /// # Example
532 ///
533 /// The builder ensures one can chain together the individual components
534 /// of a zoned datetime without it failing at an intermediate step. For
535 /// example, if you had a date of `2024-10-31T00:00:00[America/New_York]`
536 /// and wanted to change both the day and the month, and each setting was
537 /// validated independent of the other, you would need to be careful to set
538 /// the day first and then the month. In some cases, you would need to set
539 /// the month first and then the day!
540 ///
541 /// But with the builder, you can set values in any order:
542 ///
543 /// ```
544 /// use jiff::civil::date;
545 ///
546 /// let zdt1 = date(2024, 10, 31).at(0, 0, 0, 0).in_tz("America/New_York")?;
547 /// let zdt2 = zdt1.with().month(11).day(30).build()?;
548 /// assert_eq!(
549 /// zdt2,
550 /// date(2024, 11, 30).at(0, 0, 0, 0).in_tz("America/New_York")?,
551 /// );
552 ///
553 /// let zdt1 = date(2024, 4, 30).at(0, 0, 0, 0).in_tz("America/New_York")?;
554 /// let zdt2 = zdt1.with().day(31).month(7).build()?;
555 /// assert_eq!(
556 /// zdt2,
557 /// date(2024, 7, 31).at(0, 0, 0, 0).in_tz("America/New_York")?,
558 /// );
559 ///
560 /// # Ok::<(), Box<dyn std::error::Error>>(())
561 /// ```
562 #[inline]
563 pub fn with(&self) -> ZonedWith {
564 ZonedWith::new(self.clone())
565 }
566
567 /// Return a new zoned datetime with precisely the same instant in a
568 /// different time zone.
569 ///
570 /// The zoned datetime returned is guaranteed to have an equivalent
571 /// [`Timestamp`]. However, its civil [`DateTime`] may be different.
572 ///
573 /// # Example: What was the civil time in New York when World War 1 ended?
574 ///
575 /// ```
576 /// use jiff::{civil::date, tz::TimeZone};
577 ///
578 /// let from = TimeZone::get("Europe/Paris")?;
579 /// let to = TimeZone::get("America/New_York")?;
580 /// let zdt1 = date(1918, 11, 11).at(11, 0, 0, 0).to_zoned(from)?;
581 /// // Switch zdt1 to a different time zone, but keeping the same instant
582 /// // in time. The civil time changes, but not the instant!
583 /// let zdt2 = zdt1.with_time_zone(to);
584 /// assert_eq!(
585 /// zdt2.to_string(),
586 /// "1918-11-11T06:00:00-05:00[America/New_York]",
587 /// );
588 ///
589 /// # Ok::<(), Box<dyn std::error::Error>>(())
590 /// ```
591 #[inline]
592 pub fn with_time_zone(&self, time_zone: TimeZone) -> Zoned {
593 Zoned::new(self.timestamp(), time_zone)
594 }
595
596 /// Return a new zoned datetime with precisely the same instant in a
597 /// different time zone.
598 ///
599 /// The zoned datetime returned is guaranteed to have an equivalent
600 /// [`Timestamp`]. However, its civil [`DateTime`] may be different.
601 ///
602 /// The name given is resolved to a [`TimeZone`] by using the default
603 /// [`TimeZoneDatabase`](crate::tz::TimeZoneDatabase) created by
604 /// [`tz::db`](crate::tz::db). Indeed, this is a convenience function for
605 /// [`DateTime::to_zoned`] where the time zone database lookup is done
606 /// automatically.
607 ///
608 /// # Errors
609 ///
610 /// This returns an error when the given time zone name could not be found
611 /// in the default time zone database.
612 ///
613 /// # Example: What was the civil time in New York when World War 1 ended?
614 ///
615 /// ```
616 /// use jiff::civil::date;
617 ///
618 /// let zdt1 = date(1918, 11, 11).at(11, 0, 0, 0).in_tz("Europe/Paris")?;
619 /// // Switch zdt1 to a different time zone, but keeping the same instant
620 /// // in time. The civil time changes, but not the instant!
621 /// let zdt2 = zdt1.in_tz("America/New_York")?;
622 /// assert_eq!(
623 /// zdt2.to_string(),
624 /// "1918-11-11T06:00:00-05:00[America/New_York]",
625 /// );
626 ///
627 /// # Ok::<(), Box<dyn std::error::Error>>(())
628 /// ```
629 #[inline]
630 pub fn in_tz(&self, name: &str) -> Result<Zoned, Error> {
631 let tz = crate::tz::db().get(name)?;
632 Ok(self.with_time_zone(tz))
633 }
634
635 /// Returns the time zone attached to this [`Zoned`] value.
636 ///
637 /// A time zone is more than just an offset. A time zone is a series of
638 /// rules for determining the civil time for a corresponding instant.
639 /// Indeed, a zoned datetime uses its time zone to perform zone-aware
640 /// arithmetic, rounding and serialization.
641 ///
642 /// # Example
643 ///
644 /// ```
645 /// use jiff::Zoned;
646 ///
647 /// let zdt: Zoned = "2024-07-03 14:31[america/new_york]".parse()?;
648 /// assert_eq!(zdt.time_zone().iana_name(), Some("America/New_York"));
649 ///
650 /// # Ok::<(), Box<dyn std::error::Error>>(())
651 /// ```
652 #[inline]
653 pub fn time_zone(&self) -> &TimeZone {
654 &self.inner.time_zone
655 }
656
657 /// Returns the year for this zoned datetime.
658 ///
659 /// The value returned is guaranteed to be in the range `-9999..=9999`.
660 ///
661 /// # Example
662 ///
663 /// ```
664 /// use jiff::civil::date;
665 ///
666 /// let zdt1 = date(2024, 3, 9).at(7, 30, 0, 0).in_tz("America/New_York")?;
667 /// assert_eq!(zdt1.year(), 2024);
668 ///
669 /// let zdt2 = date(-2024, 3, 9).at(7, 30, 0, 0).in_tz("America/New_York")?;
670 /// assert_eq!(zdt2.year(), -2024);
671 ///
672 /// let zdt3 = date(0, 3, 9).at(7, 30, 0, 0).in_tz("America/New_York")?;
673 /// assert_eq!(zdt3.year(), 0);
674 ///
675 /// # Ok::<(), Box<dyn std::error::Error>>(())
676 /// ```
677 #[inline]
678 pub fn year(&self) -> i16 {
679 self.date().year()
680 }
681
682 /// Returns the year and its era.
683 ///
684 /// This crate specifically allows years to be negative or `0`, where as
685 /// years written for the Gregorian calendar are always positive and
686 /// greater than `0`. In the Gregorian calendar, the era labels `BCE` and
687 /// `CE` are used to disambiguate between years less than or equal to `0`
688 /// and years greater than `0`, respectively.
689 ///
690 /// The crate is designed this way so that years in the latest era (that
691 /// is, `CE`) are aligned with years in this crate.
692 ///
693 /// The year returned is guaranteed to be in the range `1..=10000`.
694 ///
695 /// # Example
696 ///
697 /// ```
698 /// use jiff::civil::{Era, date};
699 ///
700 /// let zdt = date(2024, 10, 3).at(7, 30, 0, 0).in_tz("America/New_York")?;
701 /// assert_eq!(zdt.era_year(), (2024, Era::CE));
702 ///
703 /// let zdt = date(1, 10, 3).at(7, 30, 0, 0).in_tz("America/New_York")?;
704 /// assert_eq!(zdt.era_year(), (1, Era::CE));
705 ///
706 /// let zdt = date(0, 10, 3).at(7, 30, 0, 0).in_tz("America/New_York")?;
707 /// assert_eq!(zdt.era_year(), (1, Era::BCE));
708 ///
709 /// let zdt = date(-1, 10, 3).at(7, 30, 0, 0).in_tz("America/New_York")?;
710 /// assert_eq!(zdt.era_year(), (2, Era::BCE));
711 ///
712 /// let zdt = date(-10, 10, 3).at(7, 30, 0, 0).in_tz("America/New_York")?;
713 /// assert_eq!(zdt.era_year(), (11, Era::BCE));
714 ///
715 /// let zdt = date(-9_999, 10, 3).at(7, 30, 0, 0).in_tz("America/New_York")?;
716 /// assert_eq!(zdt.era_year(), (10_000, Era::BCE));
717 ///
718 /// # Ok::<(), Box<dyn std::error::Error>>(())
719 /// ```
720 #[inline]
721 pub fn era_year(&self) -> (i16, Era) {
722 self.date().era_year()
723 }
724
725 /// Returns the month for this zoned datetime.
726 ///
727 /// The value returned is guaranteed to be in the range `1..=12`.
728 ///
729 /// # Example
730 ///
731 /// ```
732 /// use jiff::civil::date;
733 ///
734 /// let zdt = date(2024, 3, 9).at(7, 30, 0, 0).in_tz("America/New_York")?;
735 /// assert_eq!(zdt.month(), 3);
736 ///
737 /// # Ok::<(), Box<dyn std::error::Error>>(())
738 /// ```
739 #[inline]
740 pub fn month(&self) -> i8 {
741 self.date().month()
742 }
743
744 /// Returns the day for this zoned datetime.
745 ///
746 /// The value returned is guaranteed to be in the range `1..=31`.
747 ///
748 /// # Example
749 ///
750 /// ```
751 /// use jiff::civil::date;
752 ///
753 /// let zdt = date(2024, 2, 29).at(7, 30, 0, 0).in_tz("America/New_York")?;
754 /// assert_eq!(zdt.day(), 29);
755 ///
756 /// # Ok::<(), Box<dyn std::error::Error>>(())
757 /// ```
758 #[inline]
759 pub fn day(&self) -> i8 {
760 self.date().day()
761 }
762
763 /// Returns the "hour" component of this zoned datetime.
764 ///
765 /// The value returned is guaranteed to be in the range `0..=23`.
766 ///
767 /// # Example
768 ///
769 /// ```
770 /// use jiff::civil::date;
771 ///
772 /// let zdt = date(2000, 1, 2)
773 /// .at(3, 4, 5, 123_456_789)
774 /// .in_tz("America/New_York")?;
775 /// assert_eq!(zdt.hour(), 3);
776 ///
777 /// # Ok::<(), Box<dyn std::error::Error>>(())
778 /// ```
779 #[inline]
780 pub fn hour(&self) -> i8 {
781 self.time().hour()
782 }
783
784 /// Returns the "minute" component of this zoned datetime.
785 ///
786 /// The value returned is guaranteed to be in the range `0..=59`.
787 ///
788 /// # Example
789 ///
790 /// ```
791 /// use jiff::civil::date;
792 ///
793 /// let zdt = date(2000, 1, 2)
794 /// .at(3, 4, 5, 123_456_789)
795 /// .in_tz("America/New_York")?;
796 /// assert_eq!(zdt.minute(), 4);
797 ///
798 /// # Ok::<(), Box<dyn std::error::Error>>(())
799 /// ```
800 #[inline]
801 pub fn minute(&self) -> i8 {
802 self.time().minute()
803 }
804
805 /// Returns the "second" component of this zoned datetime.
806 ///
807 /// The value returned is guaranteed to be in the range `0..=59`.
808 ///
809 /// # Example
810 ///
811 /// ```
812 /// use jiff::civil::date;
813 ///
814 /// let zdt = date(2000, 1, 2)
815 /// .at(3, 4, 5, 123_456_789)
816 /// .in_tz("America/New_York")?;
817 /// assert_eq!(zdt.second(), 5);
818 ///
819 /// # Ok::<(), Box<dyn std::error::Error>>(())
820 /// ```
821 #[inline]
822 pub fn second(&self) -> i8 {
823 self.time().second()
824 }
825
826 /// Returns the "millisecond" component of this zoned datetime.
827 ///
828 /// The value returned is guaranteed to be in the range `0..=999`.
829 ///
830 /// # Example
831 ///
832 /// ```
833 /// use jiff::civil::date;
834 ///
835 /// let zdt = date(2000, 1, 2)
836 /// .at(3, 4, 5, 123_456_789)
837 /// .in_tz("America/New_York")?;
838 /// assert_eq!(zdt.millisecond(), 123);
839 ///
840 /// # Ok::<(), Box<dyn std::error::Error>>(())
841 /// ```
842 #[inline]
843 pub fn millisecond(&self) -> i16 {
844 self.time().millisecond()
845 }
846
847 /// Returns the "microsecond" component of this zoned datetime.
848 ///
849 /// The value returned is guaranteed to be in the range `0..=999`.
850 ///
851 /// # Example
852 ///
853 /// ```
854 /// use jiff::civil::date;
855 ///
856 /// let zdt = date(2000, 1, 2)
857 /// .at(3, 4, 5, 123_456_789)
858 /// .in_tz("America/New_York")?;
859 /// assert_eq!(zdt.microsecond(), 456);
860 ///
861 /// # Ok::<(), Box<dyn std::error::Error>>(())
862 /// ```
863 #[inline]
864 pub fn microsecond(&self) -> i16 {
865 self.time().microsecond()
866 }
867
868 /// Returns the "nanosecond" component of this zoned datetime.
869 ///
870 /// The value returned is guaranteed to be in the range `0..=999`.
871 ///
872 /// # Example
873 ///
874 /// ```
875 /// use jiff::civil::date;
876 ///
877 /// let zdt = date(2000, 1, 2)
878 /// .at(3, 4, 5, 123_456_789)
879 /// .in_tz("America/New_York")?;
880 /// assert_eq!(zdt.nanosecond(), 789);
881 ///
882 /// # Ok::<(), Box<dyn std::error::Error>>(())
883 /// ```
884 #[inline]
885 pub fn nanosecond(&self) -> i16 {
886 self.time().nanosecond()
887 }
888
889 /// Returns the fractional nanosecond for this `Zoned` value.
890 ///
891 /// If you want to set this value on `Zoned`, then use
892 /// [`ZonedWith::subsec_nanosecond`] via [`Zoned::with`].
893 ///
894 /// The value returned is guaranteed to be in the range `0..=999_999_999`.
895 ///
896 /// # Example
897 ///
898 /// This shows the relationship between constructing a `Zoned` value
899 /// with routines like `with().millisecond()` and accessing the entire
900 /// fractional part as a nanosecond:
901 ///
902 /// ```
903 /// use jiff::civil::date;
904 ///
905 /// let zdt1 = date(2000, 1, 2)
906 /// .at(3, 4, 5, 123_456_789)
907 /// .in_tz("America/New_York")?;
908 /// assert_eq!(zdt1.subsec_nanosecond(), 123_456_789);
909 ///
910 /// let zdt2 = zdt1.with().millisecond(333).build()?;
911 /// assert_eq!(zdt2.subsec_nanosecond(), 333_456_789);
912 ///
913 /// # Ok::<(), Box<dyn std::error::Error>>(())
914 /// ```
915 ///
916 /// # Example: nanoseconds from a timestamp
917 ///
918 /// This shows how the fractional nanosecond part of a `Zoned` value
919 /// manifests from a specific timestamp.
920 ///
921 /// ```
922 /// use jiff::{civil, Timestamp};
923 ///
924 /// // 1,234 nanoseconds after the Unix epoch.
925 /// let zdt = Timestamp::new(0, 1_234)?.in_tz("UTC")?;
926 /// assert_eq!(zdt.subsec_nanosecond(), 1_234);
927 ///
928 /// // 1,234 nanoseconds before the Unix epoch.
929 /// let zdt = Timestamp::new(0, -1_234)?.in_tz("UTC")?;
930 /// // The nanosecond is equal to `1_000_000_000 - 1_234`.
931 /// assert_eq!(zdt.subsec_nanosecond(), 999998766);
932 /// // Looking at the other components of the time value might help.
933 /// assert_eq!(zdt.hour(), 23);
934 /// assert_eq!(zdt.minute(), 59);
935 /// assert_eq!(zdt.second(), 59);
936 ///
937 /// # Ok::<(), Box<dyn std::error::Error>>(())
938 /// ```
939 #[inline]
940 pub fn subsec_nanosecond(&self) -> i32 {
941 self.time().subsec_nanosecond()
942 }
943
944 /// Returns the weekday corresponding to this zoned datetime.
945 ///
946 /// # Example
947 ///
948 /// ```
949 /// use jiff::civil::{Weekday, date};
950 ///
951 /// // The Unix epoch was on a Thursday.
952 /// let zdt = date(1970, 1, 1).at(7, 30, 0, 0).in_tz("America/New_York")?;
953 /// assert_eq!(zdt.weekday(), Weekday::Thursday);
954 /// // One can also get the weekday as an offset in a variety of schemes.
955 /// assert_eq!(zdt.weekday().to_monday_zero_offset(), 3);
956 /// assert_eq!(zdt.weekday().to_monday_one_offset(), 4);
957 /// assert_eq!(zdt.weekday().to_sunday_zero_offset(), 4);
958 /// assert_eq!(zdt.weekday().to_sunday_one_offset(), 5);
959 ///
960 /// # Ok::<(), Box<dyn std::error::Error>>(())
961 /// ```
962 #[inline]
963 pub fn weekday(&self) -> Weekday {
964 self.date().weekday()
965 }
966
967 /// Returns the ordinal day of the year that this zoned datetime resides
968 /// in.
969 ///
970 /// For leap years, this always returns a value in the range `1..=366`.
971 /// Otherwise, the value is in the range `1..=365`.
972 ///
973 /// # Example
974 ///
975 /// ```
976 /// use jiff::civil::date;
977 ///
978 /// let zdt = date(2006, 8, 24).at(7, 30, 0, 0).in_tz("America/New_York")?;
979 /// assert_eq!(zdt.day_of_year(), 236);
980 ///
981 /// let zdt = date(2023, 12, 31).at(7, 30, 0, 0).in_tz("America/New_York")?;
982 /// assert_eq!(zdt.day_of_year(), 365);
983 ///
984 /// let zdt = date(2024, 12, 31).at(7, 30, 0, 0).in_tz("America/New_York")?;
985 /// assert_eq!(zdt.day_of_year(), 366);
986 ///
987 /// # Ok::<(), Box<dyn std::error::Error>>(())
988 /// ```
989 #[inline]
990 pub fn day_of_year(&self) -> i16 {
991 self.date().day_of_year()
992 }
993
994 /// Returns the ordinal day of the year that this zoned datetime resides
995 /// in, but ignores leap years.
996 ///
997 /// That is, the range of possible values returned by this routine is
998 /// `1..=365`, even if this date resides in a leap year. If this date is
999 /// February 29, then this routine returns `None`.
1000 ///
1001 /// The value `365` always corresponds to the last day in the year,
1002 /// December 31, even for leap years.
1003 ///
1004 /// # Example
1005 ///
1006 /// ```
1007 /// use jiff::civil::date;
1008 ///
1009 /// let zdt = date(2006, 8, 24).at(7, 30, 0, 0).in_tz("America/New_York")?;
1010 /// assert_eq!(zdt.day_of_year_no_leap(), Some(236));
1011 ///
1012 /// let zdt = date(2023, 12, 31).at(7, 30, 0, 0).in_tz("America/New_York")?;
1013 /// assert_eq!(zdt.day_of_year_no_leap(), Some(365));
1014 ///
1015 /// let zdt = date(2024, 12, 31).at(7, 30, 0, 0).in_tz("America/New_York")?;
1016 /// assert_eq!(zdt.day_of_year_no_leap(), Some(365));
1017 ///
1018 /// let zdt = date(2024, 2, 29).at(7, 30, 0, 0).in_tz("America/New_York")?;
1019 /// assert_eq!(zdt.day_of_year_no_leap(), None);
1020 ///
1021 /// # Ok::<(), Box<dyn std::error::Error>>(())
1022 /// ```
1023 #[inline]
1024 pub fn day_of_year_no_leap(&self) -> Option<i16> {
1025 self.date().day_of_year_no_leap()
1026 }
1027
1028 /// Returns the beginning of the day, corresponding to `00:00:00` civil
1029 /// time, that this datetime resides in.
1030 ///
1031 /// While in nearly all cases the time returned will be `00:00:00`, it is
1032 /// possible for the time to be different from midnight if there is a time
1033 /// zone transition at midnight.
1034 ///
1035 /// # Example
1036 ///
1037 /// ```
1038 /// use jiff::{civil::date, Zoned};
1039 ///
1040 /// let zdt = date(2015, 10, 18).at(12, 0, 0, 0).in_tz("America/New_York")?;
1041 /// assert_eq!(
1042 /// zdt.start_of_day()?.to_string(),
1043 /// "2015-10-18T00:00:00-04:00[America/New_York]",
1044 /// );
1045 ///
1046 /// # Ok::<(), Box<dyn std::error::Error>>(())
1047 /// ```
1048 ///
1049 /// # Example: start of day may not be midnight
1050 ///
1051 /// In some time zones, gap transitions may begin at midnight. This implies
1052 /// that `00:xx:yy` does not exist on a clock in that time zone for that
1053 /// day.
1054 ///
1055 /// ```
1056 /// use jiff::{civil::date, Zoned};
1057 ///
1058 /// let zdt = date(2015, 10, 18).at(12, 0, 0, 0).in_tz("America/Sao_Paulo")?;
1059 /// assert_eq!(
1060 /// zdt.start_of_day()?.to_string(),
1061 /// // not midnight!
1062 /// "2015-10-18T01:00:00-02:00[America/Sao_Paulo]",
1063 /// );
1064 ///
1065 /// # Ok::<(), Box<dyn std::error::Error>>(())
1066 /// ```
1067 ///
1068 /// # Example: error because of overflow
1069 ///
1070 /// In some cases, it's possible for `Zoned` value to be able to represent
1071 /// an instant in time later in the day for a particular time zone, but not
1072 /// earlier in the day. This can only occur near the minimum datetime value
1073 /// supported by Jiff.
1074 ///
1075 /// ```
1076 /// use jiff::{civil::date, tz::{TimeZone, Offset}, Zoned};
1077 ///
1078 /// // While -9999-01-03T04:00:00+25:59:59 is representable as a Zoned
1079 /// // value, the start of the corresponding day is not!
1080 /// let tz = TimeZone::fixed(Offset::MAX);
1081 /// let zdt = date(-9999, 1, 3).at(4, 0, 0, 0).to_zoned(tz.clone())?;
1082 /// assert!(zdt.start_of_day().is_err());
1083 /// // The next day works fine since -9999-01-04T00:00:00+25:59:59 is
1084 /// // representable.
1085 /// let zdt = date(-9999, 1, 4).at(15, 0, 0, 0).to_zoned(tz)?;
1086 /// assert_eq!(
1087 /// zdt.start_of_day()?.datetime(),
1088 /// date(-9999, 1, 4).at(0, 0, 0, 0),
1089 /// );
1090 ///
1091 /// # Ok::<(), Box<dyn std::error::Error>>(())
1092 /// ```
1093 #[inline]
1094 pub fn start_of_day(&self) -> Result<Zoned, Error> {
1095 self.datetime().start_of_day().to_zoned(self.time_zone().clone())
1096 }
1097
1098 /// Returns the end of the day, corresponding to `23:59:59.999999999` civil
1099 /// time, that this datetime resides in.
1100 ///
1101 /// While in nearly all cases the time returned will be
1102 /// `23:59:59.999999999`, it is possible for the time to be different if
1103 /// there is a time zone transition covering that time.
1104 ///
1105 /// # Example
1106 ///
1107 /// ```
1108 /// use jiff::civil::date;
1109 ///
1110 /// let zdt = date(2024, 7, 3)
1111 /// .at(7, 30, 10, 123_456_789)
1112 /// .in_tz("America/New_York")?;
1113 /// assert_eq!(
1114 /// zdt.end_of_day()?,
1115 /// date(2024, 7, 3)
1116 /// .at(23, 59, 59, 999_999_999)
1117 /// .in_tz("America/New_York")?,
1118 /// );
1119 ///
1120 /// # Ok::<(), Box<dyn std::error::Error>>(())
1121 /// ```
1122 ///
1123 /// # Example: error because of overflow
1124 ///
1125 /// In some cases, it's possible for `Zoned` value to be able to represent
1126 /// an instant in time earlier in the day for a particular time zone, but
1127 /// not later in the day. This can only occur near the maximum datetime
1128 /// value supported by Jiff.
1129 ///
1130 /// ```
1131 /// use jiff::{civil::date, tz::{TimeZone, Offset}, Zoned};
1132 ///
1133 /// // While 9999-12-30T01:30-04 is representable as a Zoned
1134 /// // value, the start of the corresponding day is not!
1135 /// let tz = TimeZone::get("America/New_York")?;
1136 /// let zdt = date(9999, 12, 30).at(1, 30, 0, 0).to_zoned(tz.clone())?;
1137 /// assert!(zdt.end_of_day().is_err());
1138 /// // The previous day works fine since 9999-12-29T23:59:59.999999999-04
1139 /// // is representable.
1140 /// let zdt = date(9999, 12, 29).at(1, 30, 0, 0).to_zoned(tz.clone())?;
1141 /// assert_eq!(
1142 /// zdt.end_of_day()?,
1143 /// date(9999, 12, 29)
1144 /// .at(23, 59, 59, 999_999_999)
1145 /// .in_tz("America/New_York")?,
1146 /// );
1147 ///
1148 /// # Ok::<(), Box<dyn std::error::Error>>(())
1149 /// ```
1150 #[inline]
1151 pub fn end_of_day(&self) -> Result<Zoned, Error> {
1152 let end_of_civil_day = self.datetime().end_of_day();
1153 let ambts = self.time_zone().to_ambiguous_timestamp(end_of_civil_day);
1154 // I'm not sure if there are any real world cases where this matters,
1155 // but this is basically the reverse of `compatible`, so we write
1156 // it out ourselves. Basically, if the last civil datetime is in a
1157 // gap, then we want the earlier instant since the later instant must
1158 // necessarily be in the next day. And if the last civil datetime is
1159 // in a fold, then we want the later instant since both the earlier
1160 // and later instants are in the same calendar day and the later one
1161 // must be, well, later. In contrast, compatible mode takes the later
1162 // instant in a gap and the earlier instant in a fold. So we flip that
1163 // here.
1164 let offset = match ambts.offset() {
1165 AmbiguousOffset::Unambiguous { offset } => offset,
1166 AmbiguousOffset::Gap { after, .. } => after,
1167 AmbiguousOffset::Fold { after, .. } => after,
1168 };
1169 offset
1170 .to_timestamp(end_of_civil_day)
1171 .map(|ts| ts.to_zoned(self.time_zone().clone()))
1172 }
1173
1174 /// Returns the first date of the month that this zoned datetime resides
1175 /// in.
1176 ///
1177 /// In most cases, the time in the zoned datetime returned remains
1178 /// unchanged. In some cases, the time may change if the time
1179 /// on the previous date was unambiguous (always true, since a
1180 /// `Zoned` is a precise instant in time) and the same clock time
1181 /// on the returned zoned datetime is ambiguous. In this case, the
1182 /// [`Disambiguation::Compatible`]
1183 /// strategy will be used to turn it into a precise instant. If you want to
1184 /// use a different disambiguation strategy, then use [`Zoned::datetime`]
1185 /// to get the civil datetime, then use [`DateTime::first_of_month`],
1186 /// then use [`TimeZone::to_ambiguous_zoned`] and apply your preferred
1187 /// disambiguation strategy.
1188 ///
1189 /// # Example
1190 ///
1191 /// ```
1192 /// use jiff::civil::date;
1193 ///
1194 /// let zdt = date(2024, 2, 29).at(7, 30, 0, 0).in_tz("America/New_York")?;
1195 /// assert_eq!(
1196 /// zdt.first_of_month()?,
1197 /// date(2024, 2, 1).at(7, 30, 0, 0).in_tz("America/New_York")?,
1198 /// );
1199 ///
1200 /// # Ok::<(), Box<dyn std::error::Error>>(())
1201 /// ```
1202 #[inline]
1203 pub fn first_of_month(&self) -> Result<Zoned, Error> {
1204 self.datetime().first_of_month().to_zoned(self.time_zone().clone())
1205 }
1206
1207 /// Returns the last date of the month that this zoned datetime resides in.
1208 ///
1209 /// In most cases, the time in the zoned datetime returned remains
1210 /// unchanged. In some cases, the time may change if the time
1211 /// on the previous date was unambiguous (always true, since a
1212 /// `Zoned` is a precise instant in time) and the same clock time
1213 /// on the returned zoned datetime is ambiguous. In this case, the
1214 /// [`Disambiguation::Compatible`]
1215 /// strategy will be used to turn it into a precise instant. If you want to
1216 /// use a different disambiguation strategy, then use [`Zoned::datetime`]
1217 /// to get the civil datetime, then use [`DateTime::last_of_month`],
1218 /// then use [`TimeZone::to_ambiguous_zoned`] and apply your preferred
1219 /// disambiguation strategy.
1220 ///
1221 /// # Example
1222 ///
1223 /// ```
1224 /// use jiff::civil::date;
1225 ///
1226 /// let zdt = date(2024, 2, 5).at(7, 30, 0, 0).in_tz("America/New_York")?;
1227 /// assert_eq!(
1228 /// zdt.last_of_month()?,
1229 /// date(2024, 2, 29).at(7, 30, 0, 0).in_tz("America/New_York")?,
1230 /// );
1231 ///
1232 /// # Ok::<(), Box<dyn std::error::Error>>(())
1233 /// ```
1234 #[inline]
1235 pub fn last_of_month(&self) -> Result<Zoned, Error> {
1236 self.datetime().last_of_month().to_zoned(self.time_zone().clone())
1237 }
1238
1239 /// Returns the ordinal number of the last day in the month in which this
1240 /// zoned datetime resides.
1241 ///
1242 /// This is phrased as "the ordinal number of the last day" instead of "the
1243 /// number of days" because some months may be missing days due to time
1244 /// zone transitions. However, this is extraordinarily rare.
1245 ///
1246 /// This is guaranteed to always return one of the following values,
1247 /// depending on the year and the month: 28, 29, 30 or 31.
1248 ///
1249 /// # Example
1250 ///
1251 /// ```
1252 /// use jiff::civil::date;
1253 ///
1254 /// let zdt = date(2024, 2, 10).at(7, 30, 0, 0).in_tz("America/New_York")?;
1255 /// assert_eq!(zdt.days_in_month(), 29);
1256 ///
1257 /// let zdt = date(2023, 2, 10).at(7, 30, 0, 0).in_tz("America/New_York")?;
1258 /// assert_eq!(zdt.days_in_month(), 28);
1259 ///
1260 /// let zdt = date(2024, 8, 15).at(7, 30, 0, 0).in_tz("America/New_York")?;
1261 /// assert_eq!(zdt.days_in_month(), 31);
1262 ///
1263 /// # Ok::<(), Box<dyn std::error::Error>>(())
1264 /// ```
1265 ///
1266 /// # Example: count of days in month
1267 ///
1268 /// In `Pacific/Apia`, December 2011 did not have a December 30. Instead,
1269 /// the calendar [skipped from December 29 right to December 31][samoa].
1270 ///
1271 /// If you really do need the count of days in a month in a time zone
1272 /// aware fashion, then it's possible to achieve through arithmetic:
1273 ///
1274 /// ```
1275 /// use jiff::{civil::date, RoundMode, ToSpan, Unit, ZonedDifference};
1276 ///
1277 /// let first_of_month = date(2011, 12, 1).in_tz("Pacific/Apia")?;
1278 /// assert_eq!(first_of_month.days_in_month(), 31);
1279 /// let one_month_later = first_of_month.checked_add(1.month())?;
1280 ///
1281 /// let options = ZonedDifference::new(&one_month_later)
1282 /// .largest(Unit::Hour)
1283 /// .smallest(Unit::Hour)
1284 /// .mode(RoundMode::HalfExpand);
1285 /// let span = first_of_month.until(options)?;
1286 /// let days = ((span.get_hours() as f64) / 24.0).round() as i64;
1287 /// // Try the above in a different time zone, like America/New_York, and
1288 /// // you'll get 31 here.
1289 /// assert_eq!(days, 30);
1290 ///
1291 /// # Ok::<(), Box<dyn std::error::Error>>(())
1292 /// ```
1293 ///
1294 /// [samoa]: https://en.wikipedia.org/wiki/Time_in_Samoa#2011_time_zone_change
1295 #[inline]
1296 pub fn days_in_month(&self) -> i8 {
1297 self.date().days_in_month()
1298 }
1299
1300 /// Returns the first date of the year that this zoned datetime resides in.
1301 ///
1302 /// In most cases, the time in the zoned datetime returned remains
1303 /// unchanged. In some cases, the time may change if the time
1304 /// on the previous date was unambiguous (always true, since a
1305 /// `Zoned` is a precise instant in time) and the same clock time
1306 /// on the returned zoned datetime is ambiguous. In this case, the
1307 /// [`Disambiguation::Compatible`]
1308 /// strategy will be used to turn it into a precise instant. If you want to
1309 /// use a different disambiguation strategy, then use [`Zoned::datetime`]
1310 /// to get the civil datetime, then use [`DateTime::first_of_year`],
1311 /// then use [`TimeZone::to_ambiguous_zoned`] and apply your preferred
1312 /// disambiguation strategy.
1313 ///
1314 /// # Example
1315 ///
1316 /// ```
1317 /// use jiff::civil::date;
1318 ///
1319 /// let zdt = date(2024, 2, 29).at(7, 30, 0, 0).in_tz("America/New_York")?;
1320 /// assert_eq!(
1321 /// zdt.first_of_year()?,
1322 /// date(2024, 1, 1).at(7, 30, 0, 0).in_tz("America/New_York")?,
1323 /// );
1324 ///
1325 /// # Ok::<(), Box<dyn std::error::Error>>(())
1326 /// ```
1327 #[inline]
1328 pub fn first_of_year(&self) -> Result<Zoned, Error> {
1329 self.datetime().first_of_year().to_zoned(self.time_zone().clone())
1330 }
1331
1332 /// Returns the last date of the year that this zoned datetime resides in.
1333 ///
1334 /// In most cases, the time in the zoned datetime returned remains
1335 /// unchanged. In some cases, the time may change if the time
1336 /// on the previous date was unambiguous (always true, since a
1337 /// `Zoned` is a precise instant in time) and the same clock time
1338 /// on the returned zoned datetime is ambiguous. In this case, the
1339 /// [`Disambiguation::Compatible`]
1340 /// strategy will be used to turn it into a precise instant. If you want to
1341 /// use a different disambiguation strategy, then use [`Zoned::datetime`]
1342 /// to get the civil datetime, then use [`DateTime::last_of_year`],
1343 /// then use [`TimeZone::to_ambiguous_zoned`] and apply your preferred
1344 /// disambiguation strategy.
1345 ///
1346 /// # Example
1347 ///
1348 /// ```
1349 /// use jiff::civil::date;
1350 ///
1351 /// let zdt = date(2024, 2, 5).at(7, 30, 0, 0).in_tz("America/New_York")?;
1352 /// assert_eq!(
1353 /// zdt.last_of_year()?,
1354 /// date(2024, 12, 31).at(7, 30, 0, 0).in_tz("America/New_York")?,
1355 /// );
1356 ///
1357 /// # Ok::<(), Box<dyn std::error::Error>>(())
1358 /// ```
1359 #[inline]
1360 pub fn last_of_year(&self) -> Result<Zoned, Error> {
1361 self.datetime().last_of_year().to_zoned(self.time_zone().clone())
1362 }
1363
1364 /// Returns the ordinal number of the last day in the year in which this
1365 /// zoned datetime resides.
1366 ///
1367 /// This is phrased as "the ordinal number of the last day" instead of "the
1368 /// number of days" because some years may be missing days due to time
1369 /// zone transitions. However, this is extraordinarily rare.
1370 ///
1371 /// This is guaranteed to always return either `365` or `366`.
1372 ///
1373 /// # Example
1374 ///
1375 /// ```
1376 /// use jiff::civil::date;
1377 ///
1378 /// let zdt = date(2024, 7, 10).at(7, 30, 0, 0).in_tz("America/New_York")?;
1379 /// assert_eq!(zdt.days_in_year(), 366);
1380 ///
1381 /// let zdt = date(2023, 7, 10).at(7, 30, 0, 0).in_tz("America/New_York")?;
1382 /// assert_eq!(zdt.days_in_year(), 365);
1383 ///
1384 /// # Ok::<(), Box<dyn std::error::Error>>(())
1385 /// ```
1386 #[inline]
1387 pub fn days_in_year(&self) -> i16 {
1388 self.date().days_in_year()
1389 }
1390
1391 /// Returns true if and only if the year in which this zoned datetime
1392 /// resides is a leap year.
1393 ///
1394 /// # Example
1395 ///
1396 /// ```
1397 /// use jiff::civil::date;
1398 ///
1399 /// let zdt = date(2024, 1, 1).at(7, 30, 0, 0).in_tz("America/New_York")?;
1400 /// assert!(zdt.in_leap_year());
1401 ///
1402 /// let zdt = date(2023, 12, 31).at(7, 30, 0, 0).in_tz("America/New_York")?;
1403 /// assert!(!zdt.in_leap_year());
1404 ///
1405 /// # Ok::<(), Box<dyn std::error::Error>>(())
1406 /// ```
1407 #[inline]
1408 pub fn in_leap_year(&self) -> bool {
1409 self.date().in_leap_year()
1410 }
1411
1412 /// Returns the zoned datetime with a date immediately following this one.
1413 ///
1414 /// In most cases, the time in the zoned datetime returned remains
1415 /// unchanged. In some cases, the time may change if the time
1416 /// on the previous date was unambiguous (always true, since a
1417 /// `Zoned` is a precise instant in time) and the same clock time
1418 /// on the returned zoned datetime is ambiguous. In this case, the
1419 /// [`Disambiguation::Compatible`]
1420 /// strategy will be used to turn it into a precise instant. If you want to
1421 /// use a different disambiguation strategy, then use [`Zoned::datetime`]
1422 /// to get the civil datetime, then use [`DateTime::tomorrow`],
1423 /// then use [`TimeZone::to_ambiguous_zoned`] and apply your preferred
1424 /// disambiguation strategy.
1425 ///
1426 /// # Errors
1427 ///
1428 /// This returns an error when one day following this zoned datetime would
1429 /// exceed the maximum `Zoned` value.
1430 ///
1431 /// # Example
1432 ///
1433 /// ```
1434 /// use jiff::{civil::date, Timestamp};
1435 ///
1436 /// let zdt = date(2024, 2, 28).at(7, 30, 0, 0).in_tz("America/New_York")?;
1437 /// assert_eq!(
1438 /// zdt.tomorrow()?,
1439 /// date(2024, 2, 29).at(7, 30, 0, 0).in_tz("America/New_York")?,
1440 /// );
1441 ///
1442 /// // The max doesn't have a tomorrow.
1443 /// assert!(Timestamp::MAX.in_tz("America/New_York")?.tomorrow().is_err());
1444 ///
1445 /// # Ok::<(), Box<dyn std::error::Error>>(())
1446 /// ```
1447 ///
1448 /// # Example: ambiguous datetimes are automatically resolved
1449 ///
1450 /// ```
1451 /// use jiff::{civil::date, Timestamp};
1452 ///
1453 /// let zdt = date(2024, 3, 9).at(2, 30, 0, 0).in_tz("America/New_York")?;
1454 /// assert_eq!(
1455 /// zdt.tomorrow()?,
1456 /// date(2024, 3, 10).at(3, 30, 0, 0).in_tz("America/New_York")?,
1457 /// );
1458 ///
1459 /// # Ok::<(), Box<dyn std::error::Error>>(())
1460 /// ```
1461 #[inline]
1462 pub fn tomorrow(&self) -> Result<Zoned, Error> {
1463 self.datetime().tomorrow()?.to_zoned(self.time_zone().clone())
1464 }
1465
1466 /// Returns the zoned datetime with a date immediately preceding this one.
1467 ///
1468 /// In most cases, the time in the zoned datetime returned remains
1469 /// unchanged. In some cases, the time may change if the time
1470 /// on the previous date was unambiguous (always true, since a
1471 /// `Zoned` is a precise instant in time) and the same clock time
1472 /// on the returned zoned datetime is ambiguous. In this case, the
1473 /// [`Disambiguation::Compatible`]
1474 /// strategy will be used to turn it into a precise instant. If you want to
1475 /// use a different disambiguation strategy, then use [`Zoned::datetime`]
1476 /// to get the civil datetime, then use [`DateTime::yesterday`],
1477 /// then use [`TimeZone::to_ambiguous_zoned`] and apply your preferred
1478 /// disambiguation strategy.
1479 ///
1480 /// # Errors
1481 ///
1482 /// This returns an error when one day preceding this zoned datetime would
1483 /// be less than the minimum `Zoned` value.
1484 ///
1485 /// # Example
1486 ///
1487 /// ```
1488 /// use jiff::{civil::date, Timestamp};
1489 ///
1490 /// let zdt = date(2024, 3, 1).at(7, 30, 0, 0).in_tz("America/New_York")?;
1491 /// assert_eq!(
1492 /// zdt.yesterday()?,
1493 /// date(2024, 2, 29).at(7, 30, 0, 0).in_tz("America/New_York")?,
1494 /// );
1495 ///
1496 /// // The min doesn't have a yesterday.
1497 /// assert!(Timestamp::MIN.in_tz("America/New_York")?.yesterday().is_err());
1498 ///
1499 /// # Ok::<(), Box<dyn std::error::Error>>(())
1500 /// ```
1501 ///
1502 /// # Example: ambiguous datetimes are automatically resolved
1503 ///
1504 /// ```
1505 /// use jiff::{civil::date, Timestamp};
1506 ///
1507 /// let zdt = date(2024, 11, 4).at(1, 30, 0, 0).in_tz("America/New_York")?;
1508 /// assert_eq!(
1509 /// zdt.yesterday()?.to_string(),
1510 /// // Consistent with the "compatible" disambiguation strategy, the
1511 /// // "first" 1 o'clock hour is selected. You can tell this because
1512 /// // the offset is -04, which corresponds to DST time in New York.
1513 /// // The second 1 o'clock hour would have offset -05.
1514 /// "2024-11-03T01:30:00-04:00[America/New_York]",
1515 /// );
1516 ///
1517 /// # Ok::<(), Box<dyn std::error::Error>>(())
1518 /// ```
1519 #[inline]
1520 pub fn yesterday(&self) -> Result<Zoned, Error> {
1521 self.datetime().yesterday()?.to_zoned(self.time_zone().clone())
1522 }
1523
1524 /// Returns the "nth" weekday from the beginning or end of the month in
1525 /// which this zoned datetime resides.
1526 ///
1527 /// The `nth` parameter can be positive or negative. A positive value
1528 /// computes the "nth" weekday from the beginning of the month. A negative
1529 /// value computes the "nth" weekday from the end of the month. So for
1530 /// example, use `-1` to "find the last weekday" in this date's month.
1531 ///
1532 /// In most cases, the time in the zoned datetime returned remains
1533 /// unchanged. In some cases, the time may change if the time
1534 /// on the previous date was unambiguous (always true, since a
1535 /// `Zoned` is a precise instant in time) and the same clock time
1536 /// on the returned zoned datetime is ambiguous. In this case, the
1537 /// [`Disambiguation::Compatible`]
1538 /// strategy will be used to turn it into a precise instant. If you want to
1539 /// use a different disambiguation strategy, then use [`Zoned::datetime`]
1540 /// to get the civil datetime, then use [`DateTime::nth_weekday_of_month`],
1541 /// then use [`TimeZone::to_ambiguous_zoned`] and apply your preferred
1542 /// disambiguation strategy.
1543 ///
1544 /// # Errors
1545 ///
1546 /// This returns an error when `nth` is `0`, or if it is `5` or `-5` and
1547 /// there is no 5th weekday from the beginning or end of the month. This
1548 /// could also return an error if the corresponding datetime could not be
1549 /// represented as an instant for this `Zoned`'s time zone. (This can only
1550 /// happen close the boundaries of an [`Timestamp`].)
1551 ///
1552 /// # Example
1553 ///
1554 /// This shows how to get the nth weekday in a month, starting from the
1555 /// beginning of the month:
1556 ///
1557 /// ```
1558 /// use jiff::civil::{Weekday, date};
1559 ///
1560 /// let zdt = date(2017, 3, 1).at(7, 30, 0, 0).in_tz("America/New_York")?;
1561 /// let second_friday = zdt.nth_weekday_of_month(2, Weekday::Friday)?;
1562 /// assert_eq!(
1563 /// second_friday,
1564 /// date(2017, 3, 10).at(7, 30, 0, 0).in_tz("America/New_York")?,
1565 /// );
1566 ///
1567 /// # Ok::<(), Box<dyn std::error::Error>>(())
1568 /// ```
1569 ///
1570 /// This shows how to do the reverse of the above. That is, the nth _last_
1571 /// weekday in a month:
1572 ///
1573 /// ```
1574 /// use jiff::civil::{Weekday, date};
1575 ///
1576 /// let zdt = date(2024, 3, 1).at(7, 30, 0, 0).in_tz("America/New_York")?;
1577 /// let last_thursday = zdt.nth_weekday_of_month(-1, Weekday::Thursday)?;
1578 /// assert_eq!(
1579 /// last_thursday,
1580 /// date(2024, 3, 28).at(7, 30, 0, 0).in_tz("America/New_York")?,
1581 /// );
1582 ///
1583 /// let second_last_thursday = zdt.nth_weekday_of_month(
1584 /// -2,
1585 /// Weekday::Thursday,
1586 /// )?;
1587 /// assert_eq!(
1588 /// second_last_thursday,
1589 /// date(2024, 3, 21).at(7, 30, 0, 0).in_tz("America/New_York")?,
1590 /// );
1591 ///
1592 /// # Ok::<(), Box<dyn std::error::Error>>(())
1593 /// ```
1594 ///
1595 /// This routine can return an error if there isn't an `nth` weekday
1596 /// for this month. For example, March 2024 only has 4 Mondays:
1597 ///
1598 /// ```
1599 /// use jiff::civil::{Weekday, date};
1600 ///
1601 /// let zdt = date(2024, 3, 25).at(7, 30, 0, 0).in_tz("America/New_York")?;
1602 /// let fourth_monday = zdt.nth_weekday_of_month(4, Weekday::Monday)?;
1603 /// assert_eq!(
1604 /// fourth_monday,
1605 /// date(2024, 3, 25).at(7, 30, 0, 0).in_tz("America/New_York")?,
1606 /// );
1607 /// // There is no 5th Monday.
1608 /// assert!(zdt.nth_weekday_of_month(5, Weekday::Monday).is_err());
1609 /// // Same goes for counting backwards.
1610 /// assert!(zdt.nth_weekday_of_month(-5, Weekday::Monday).is_err());
1611 ///
1612 /// # Ok::<(), Box<dyn std::error::Error>>(())
1613 /// ```
1614 #[inline]
1615 pub fn nth_weekday_of_month(
1616 &self,
1617 nth: i8,
1618 weekday: Weekday,
1619 ) -> Result<Zoned, Error> {
1620 self.datetime()
1621 .nth_weekday_of_month(nth, weekday)?
1622 .to_zoned(self.time_zone().clone())
1623 }
1624
1625 /// Returns the "nth" weekday from this zoned datetime, not including
1626 /// itself.
1627 ///
1628 /// The `nth` parameter can be positive or negative. A positive value
1629 /// computes the "nth" weekday starting at the day after this date and
1630 /// going forwards in time. A negative value computes the "nth" weekday
1631 /// starting at the day before this date and going backwards in time.
1632 ///
1633 /// For example, if this zoned datetime's weekday is a Sunday and the first
1634 /// Sunday is asked for (that is, `zdt.nth_weekday(1, Weekday::Sunday)`),
1635 /// then the result is a week from this zoned datetime corresponding to the
1636 /// following Sunday.
1637 ///
1638 /// In most cases, the time in the zoned datetime returned remains
1639 /// unchanged. In some cases, the time may change if the time
1640 /// on the previous date was unambiguous (always true, since a
1641 /// `Zoned` is a precise instant in time) and the same clock time
1642 /// on the returned zoned datetime is ambiguous. In this case, the
1643 /// [`Disambiguation::Compatible`]
1644 /// strategy will be used to turn it into a precise instant. If you want to
1645 /// use a different disambiguation strategy, then use [`Zoned::datetime`]
1646 /// to get the civil datetime, then use [`DateTime::nth_weekday`],
1647 /// then use [`TimeZone::to_ambiguous_zoned`] and apply your preferred
1648 /// disambiguation strategy.
1649 ///
1650 /// # Errors
1651 ///
1652 /// This returns an error when `nth` is `0`, or if it would otherwise
1653 /// result in a date that overflows the minimum/maximum values of
1654 /// `Zoned`.
1655 ///
1656 /// # Example
1657 ///
1658 /// This example shows how to find the "nth" weekday going forwards in
1659 /// time:
1660 ///
1661 /// ```
1662 /// use jiff::civil::{Weekday, date};
1663 ///
1664 /// // Use a Sunday in March as our start date.
1665 /// let zdt = date(2024, 3, 10).at(7, 30, 0, 0).in_tz("America/New_York")?;
1666 /// assert_eq!(zdt.weekday(), Weekday::Sunday);
1667 ///
1668 /// // The first next Monday is tomorrow!
1669 /// let next_monday = zdt.nth_weekday(1, Weekday::Monday)?;
1670 /// assert_eq!(
1671 /// next_monday,
1672 /// date(2024, 3, 11).at(7, 30, 0, 0).in_tz("America/New_York")?,
1673 /// );
1674 ///
1675 /// // But the next Sunday is a week away, because this doesn't
1676 /// // include the current weekday.
1677 /// let next_sunday = zdt.nth_weekday(1, Weekday::Sunday)?;
1678 /// assert_eq!(
1679 /// next_sunday,
1680 /// date(2024, 3, 17).at(7, 30, 0, 0).in_tz("America/New_York")?,
1681 /// );
1682 ///
1683 /// // "not this Thursday, but next Thursday"
1684 /// let next_next_thursday = zdt.nth_weekday(2, Weekday::Thursday)?;
1685 /// assert_eq!(
1686 /// next_next_thursday,
1687 /// date(2024, 3, 21).at(7, 30, 0, 0).in_tz("America/New_York")?,
1688 /// );
1689 ///
1690 /// # Ok::<(), Box<dyn std::error::Error>>(())
1691 /// ```
1692 ///
1693 /// This example shows how to find the "nth" weekday going backwards in
1694 /// time:
1695 ///
1696 /// ```
1697 /// use jiff::civil::{Weekday, date};
1698 ///
1699 /// // Use a Sunday in March as our start date.
1700 /// let zdt = date(2024, 3, 10).at(7, 30, 0, 0).in_tz("America/New_York")?;
1701 /// assert_eq!(zdt.weekday(), Weekday::Sunday);
1702 ///
1703 /// // "last Saturday" was yesterday!
1704 /// let last_saturday = zdt.nth_weekday(-1, Weekday::Saturday)?;
1705 /// assert_eq!(
1706 /// last_saturday,
1707 /// date(2024, 3, 9).at(7, 30, 0, 0).in_tz("America/New_York")?,
1708 /// );
1709 ///
1710 /// // "last Sunday" was a week ago.
1711 /// let last_sunday = zdt.nth_weekday(-1, Weekday::Sunday)?;
1712 /// assert_eq!(
1713 /// last_sunday,
1714 /// date(2024, 3, 3).at(7, 30, 0, 0).in_tz("America/New_York")?,
1715 /// );
1716 ///
1717 /// // "not last Thursday, but the one before"
1718 /// let prev_prev_thursday = zdt.nth_weekday(-2, Weekday::Thursday)?;
1719 /// assert_eq!(
1720 /// prev_prev_thursday,
1721 /// date(2024, 2, 29).at(7, 30, 0, 0).in_tz("America/New_York")?,
1722 /// );
1723 ///
1724 /// # Ok::<(), Box<dyn std::error::Error>>(())
1725 /// ```
1726 ///
1727 /// This example shows that overflow results in an error in either
1728 /// direction:
1729 ///
1730 /// ```
1731 /// use jiff::{civil::Weekday, Timestamp};
1732 ///
1733 /// let zdt = Timestamp::MAX.in_tz("America/New_York")?;
1734 /// assert_eq!(zdt.weekday(), Weekday::Thursday);
1735 /// assert!(zdt.nth_weekday(1, Weekday::Saturday).is_err());
1736 ///
1737 /// let zdt = Timestamp::MIN.in_tz("America/New_York")?;
1738 /// assert_eq!(zdt.weekday(), Weekday::Monday);
1739 /// assert!(zdt.nth_weekday(-1, Weekday::Sunday).is_err());
1740 ///
1741 /// # Ok::<(), Box<dyn std::error::Error>>(())
1742 /// ```
1743 ///
1744 /// # Example: getting the start of the week
1745 ///
1746 /// Given a date, one can use `nth_weekday` to determine the start of the
1747 /// week in which the date resides in. This might vary based on whether
1748 /// the weeks start on Sunday or Monday. This example shows how to handle
1749 /// both.
1750 ///
1751 /// ```
1752 /// use jiff::civil::{Weekday, date};
1753 ///
1754 /// let zdt = date(2024, 3, 15).at(7, 30, 0, 0).in_tz("America/New_York")?;
1755 /// // For weeks starting with Sunday.
1756 /// let start_of_week = zdt.tomorrow()?.nth_weekday(-1, Weekday::Sunday)?;
1757 /// assert_eq!(
1758 /// start_of_week,
1759 /// date(2024, 3, 10).at(7, 30, 0, 0).in_tz("America/New_York")?,
1760 /// );
1761 /// // For weeks starting with Monday.
1762 /// let start_of_week = zdt.tomorrow()?.nth_weekday(-1, Weekday::Monday)?;
1763 /// assert_eq!(
1764 /// start_of_week,
1765 /// date(2024, 3, 11).at(7, 30, 0, 0).in_tz("America/New_York")?,
1766 /// );
1767 ///
1768 /// # Ok::<(), Box<dyn std::error::Error>>(())
1769 /// ```
1770 ///
1771 /// In the above example, we first get the date after the current one
1772 /// because `nth_weekday` does not consider itself when counting. This
1773 /// works as expected even at the boundaries of a week:
1774 ///
1775 /// ```
1776 /// use jiff::civil::{Time, Weekday, date};
1777 ///
1778 /// // The start of the week.
1779 /// let zdt = date(2024, 3, 10).at(0, 0, 0, 0).in_tz("America/New_York")?;
1780 /// let start_of_week = zdt.tomorrow()?.nth_weekday(-1, Weekday::Sunday)?;
1781 /// assert_eq!(
1782 /// start_of_week,
1783 /// date(2024, 3, 10).at(0, 0, 0, 0).in_tz("America/New_York")?,
1784 /// );
1785 /// // The end of the week.
1786 /// let zdt = date(2024, 3, 16)
1787 /// .at(23, 59, 59, 999_999_999)
1788 /// .in_tz("America/New_York")?;
1789 /// let start_of_week = zdt
1790 /// .tomorrow()?
1791 /// .nth_weekday(-1, Weekday::Sunday)?
1792 /// .with().time(Time::midnight()).build()?;
1793 /// assert_eq!(
1794 /// start_of_week,
1795 /// date(2024, 3, 10).at(0, 0, 0, 0).in_tz("America/New_York")?,
1796 /// );
1797 ///
1798 /// # Ok::<(), Box<dyn std::error::Error>>(())
1799 /// ```
1800 #[inline]
1801 pub fn nth_weekday(
1802 &self,
1803 nth: i32,
1804 weekday: Weekday,
1805 ) -> Result<Zoned, Error> {
1806 self.datetime()
1807 .nth_weekday(nth, weekday)?
1808 .to_zoned(self.time_zone().clone())
1809 }
1810
1811 /// Returns the precise instant in time referred to by this zoned datetime.
1812 ///
1813 /// # Example
1814 ///
1815 /// ```
1816 /// use jiff::civil::date;
1817 ///
1818 /// let zdt = date(2024, 3, 14).at(18, 45, 0, 0).in_tz("America/New_York")?;
1819 /// assert_eq!(zdt.timestamp().as_second(), 1_710_456_300);
1820 ///
1821 /// # Ok::<(), Box<dyn std::error::Error>>(())
1822 /// ```
1823 #[inline]
1824 pub fn timestamp(&self) -> Timestamp {
1825 self.inner.timestamp
1826 }
1827
1828 /// Returns the civil datetime component of this zoned datetime.
1829 ///
1830 /// # Example
1831 ///
1832 /// ```
1833 /// use jiff::civil::date;
1834 ///
1835 /// let zdt = date(2024, 3, 14).at(18, 45, 0, 0).in_tz("America/New_York")?;
1836 /// assert_eq!(zdt.datetime(), date(2024, 3, 14).at(18, 45, 0, 0));
1837 ///
1838 /// # Ok::<(), Box<dyn std::error::Error>>(())
1839 /// ```
1840 #[inline]
1841 pub fn datetime(&self) -> DateTime {
1842 self.inner.datetime
1843 }
1844
1845 /// Returns the civil date component of this zoned datetime.
1846 ///
1847 /// # Example
1848 ///
1849 /// ```
1850 /// use jiff::civil::date;
1851 ///
1852 /// let zdt = date(2024, 3, 14).at(18, 45, 0, 0).in_tz("America/New_York")?;
1853 /// assert_eq!(zdt.date(), date(2024, 3, 14));
1854 ///
1855 /// # Ok::<(), Box<dyn std::error::Error>>(())
1856 /// ```
1857 #[inline]
1858 pub fn date(&self) -> Date {
1859 self.datetime().date()
1860 }
1861
1862 /// Returns the civil time component of this zoned datetime.
1863 ///
1864 /// # Example
1865 ///
1866 /// ```
1867 /// use jiff::civil::{date, time};
1868 ///
1869 /// let zdt = date(2024, 3, 14).at(18, 45, 0, 0).in_tz("America/New_York")?;
1870 /// assert_eq!(zdt.time(), time(18, 45, 0, 0));
1871 ///
1872 /// # Ok::<(), Box<dyn std::error::Error>>(())
1873 /// ```
1874 #[inline]
1875 pub fn time(&self) -> Time {
1876 self.datetime().time()
1877 }
1878
1879 /// Construct a civil [ISO 8601 week date] from this zoned datetime.
1880 ///
1881 /// The [`ISOWeekDate`] type describes itself in more detail, but in
1882 /// brief, the ISO week date calendar system eschews months in favor of
1883 /// weeks.
1884 ///
1885 /// This routine is equivalent to
1886 /// [`ISOWeekDate::from_date(zdt.date())`](ISOWeekDate::from_date).
1887 ///
1888 /// [ISO 8601 week date]: https://en.wikipedia.org/wiki/ISO_week_date
1889 ///
1890 /// # Example
1891 ///
1892 /// This shows a number of examples demonstrating the conversion from a
1893 /// Gregorian date to an ISO 8601 week date:
1894 ///
1895 /// ```
1896 /// use jiff::civil::{Date, Time, Weekday, date};
1897 ///
1898 /// let zdt = date(1995, 1, 1).at(18, 45, 0, 0).in_tz("US/Eastern")?;
1899 /// let weekdate = zdt.iso_week_date();
1900 /// assert_eq!(weekdate.year(), 1994);
1901 /// assert_eq!(weekdate.week(), 52);
1902 /// assert_eq!(weekdate.weekday(), Weekday::Sunday);
1903 ///
1904 /// let zdt = date(1996, 12, 31).at(18, 45, 0, 0).in_tz("US/Eastern")?;
1905 /// let weekdate = zdt.iso_week_date();
1906 /// assert_eq!(weekdate.year(), 1997);
1907 /// assert_eq!(weekdate.week(), 1);
1908 /// assert_eq!(weekdate.weekday(), Weekday::Tuesday);
1909 ///
1910 /// let zdt = date(2019, 12, 30).at(18, 45, 0, 0).in_tz("US/Eastern")?;
1911 /// let weekdate = zdt.iso_week_date();
1912 /// assert_eq!(weekdate.year(), 2020);
1913 /// assert_eq!(weekdate.week(), 1);
1914 /// assert_eq!(weekdate.weekday(), Weekday::Monday);
1915 ///
1916 /// let zdt = date(2024, 3, 9).at(18, 45, 0, 0).in_tz("US/Eastern")?;
1917 /// let weekdate = zdt.iso_week_date();
1918 /// assert_eq!(weekdate.year(), 2024);
1919 /// assert_eq!(weekdate.week(), 10);
1920 /// assert_eq!(weekdate.weekday(), Weekday::Saturday);
1921 ///
1922 /// # Ok::<(), Box<dyn std::error::Error>>(())
1923 /// ```
1924 #[inline]
1925 pub fn iso_week_date(self) -> ISOWeekDate {
1926 self.date().iso_week_date()
1927 }
1928
1929 /// Returns the time zone offset of this zoned datetime.
1930 ///
1931 /// # Example
1932 ///
1933 /// ```
1934 /// use jiff::civil::date;
1935 ///
1936 /// let zdt = date(2024, 2, 14).at(18, 45, 0, 0).in_tz("America/New_York")?;
1937 /// // -05 because New York is in "standard" time at this point.
1938 /// assert_eq!(zdt.offset(), jiff::tz::offset(-5));
1939 ///
1940 /// let zdt = date(2024, 7, 14).at(18, 45, 0, 0).in_tz("America/New_York")?;
1941 /// // But we get -04 once "summer" or "daylight saving time" starts.
1942 /// assert_eq!(zdt.offset(), jiff::tz::offset(-4));
1943 ///
1944 /// # Ok::<(), Box<dyn std::error::Error>>(())
1945 /// ```
1946 #[inline]
1947 pub fn offset(&self) -> Offset {
1948 self.inner.offset
1949 }
1950
1951 /// Add the given span of time to this zoned datetime. If the sum would
1952 /// overflow the minimum or maximum zoned datetime values, then an error is
1953 /// returned.
1954 ///
1955 /// This operation accepts three different duration types: [`Span`],
1956 /// [`SignedDuration`] or [`std::time::Duration`]. This is achieved via
1957 /// `From` trait implementations for the [`ZonedArithmetic`] type.
1958 ///
1959 /// # Properties
1960 ///
1961 /// This routine is _not_ reversible because some additions may
1962 /// be ambiguous. For example, adding `1 month` to the zoned
1963 /// datetime `2024-03-31T00:00:00[America/New_York]` will produce
1964 /// `2024-04-30T00:00:00[America/New_York]` since April has
1965 /// only 30 days in a month. Moreover, subtracting `1 month`
1966 /// from `2024-04-30T00:00:00[America/New_York]` will produce
1967 /// `2024-03-30T00:00:00[America/New_York]`, which is not the date we
1968 /// started with.
1969 ///
1970 /// A similar argument applies for days, since with zoned datetimes,
1971 /// different days can be different lengths.
1972 ///
1973 /// If spans of time are limited to units of hours (or less), then this
1974 /// routine _is_ reversible. This also implies that all operations with a
1975 /// [`SignedDuration`] or a [`std::time::Duration`] are reversible.
1976 ///
1977 /// # Errors
1978 ///
1979 /// If the span added to this zoned datetime would result in a zoned
1980 /// datetime that exceeds the range of a `Zoned`, then this will return an
1981 /// error.
1982 ///
1983 /// # Example
1984 ///
1985 /// This shows a few examples of adding spans of time to various zoned
1986 /// datetimes. We make use of the [`ToSpan`](crate::ToSpan) trait for
1987 /// convenient creation of spans.
1988 ///
1989 /// ```
1990 /// use jiff::{civil::date, ToSpan};
1991 ///
1992 /// let zdt = date(1995, 12, 7)
1993 /// .at(3, 24, 30, 3_500)
1994 /// .in_tz("America/New_York")?;
1995 /// let got = zdt.checked_add(20.years().months(4).nanoseconds(500))?;
1996 /// assert_eq!(
1997 /// got,
1998 /// date(2016, 4, 7).at(3, 24, 30, 4_000).in_tz("America/New_York")?,
1999 /// );
2000 ///
2001 /// let zdt = date(2019, 1, 31).at(15, 30, 0, 0).in_tz("America/New_York")?;
2002 /// let got = zdt.checked_add(1.months())?;
2003 /// assert_eq!(
2004 /// got,
2005 /// date(2019, 2, 28).at(15, 30, 0, 0).in_tz("America/New_York")?,
2006 /// );
2007 ///
2008 /// # Ok::<(), Box<dyn std::error::Error>>(())
2009 /// ```
2010 ///
2011 /// # Example: available via addition operator
2012 ///
2013 /// This routine can be used via the `+` operator. Note though that if it
2014 /// fails, it will result in a panic. Note that we use `&zdt + ...` instead
2015 /// of `zdt + ...` since `Add` is implemented for `&Zoned` and not `Zoned`.
2016 /// This is because `Zoned` is not `Copy`.
2017 ///
2018 /// ```
2019 /// use jiff::{civil::date, ToSpan};
2020 ///
2021 /// let zdt = date(1995, 12, 7)
2022 /// .at(3, 24, 30, 3_500)
2023 /// .in_tz("America/New_York")?;
2024 /// let got = &zdt + 20.years().months(4).nanoseconds(500);
2025 /// assert_eq!(
2026 /// got,
2027 /// date(2016, 4, 7).at(3, 24, 30, 4_000).in_tz("America/New_York")?,
2028 /// );
2029 ///
2030 /// # Ok::<(), Box<dyn std::error::Error>>(())
2031 /// ```
2032 ///
2033 /// # Example: zone aware arithmetic
2034 ///
2035 /// This example demonstrates the difference between "add 1 day" and
2036 /// "add 24 hours." In the former case, 1 day might not correspond to 24
2037 /// hours if there is a time zone transition in the intervening period.
2038 /// However, adding 24 hours always means adding exactly 24 hours.
2039 ///
2040 /// ```
2041 /// use jiff::{civil::date, ToSpan};
2042 ///
2043 /// let zdt = date(2024, 3, 10).at(0, 0, 0, 0).in_tz("America/New_York")?;
2044 ///
2045 /// let one_day_later = zdt.checked_add(1.day())?;
2046 /// assert_eq!(
2047 /// one_day_later.to_string(),
2048 /// "2024-03-11T00:00:00-04:00[America/New_York]",
2049 /// );
2050 ///
2051 /// let twenty_four_hours_later = zdt.checked_add(24.hours())?;
2052 /// assert_eq!(
2053 /// twenty_four_hours_later.to_string(),
2054 /// "2024-03-11T01:00:00-04:00[America/New_York]",
2055 /// );
2056 ///
2057 /// # Ok::<(), Box<dyn std::error::Error>>(())
2058 /// ```
2059 ///
2060 /// # Example: automatic disambiguation
2061 ///
2062 /// This example demonstrates what happens when adding a span
2063 /// of time results in an ambiguous zoned datetime. Zone aware
2064 /// arithmetic uses automatic disambiguation corresponding to the
2065 /// [`Disambiguation::Compatible`]
2066 /// strategy for resolving an ambiguous datetime to a precise instant.
2067 /// For example, in the case below, there is a gap in the clocks for 1
2068 /// hour starting at `2024-03-10 02:00:00` in `America/New_York`. The
2069 /// "compatible" strategy chooses the later time in a gap:.
2070 ///
2071 /// ```
2072 /// use jiff::{civil::date, ToSpan};
2073 ///
2074 /// let zdt = date(2024, 3, 9).at(2, 30, 0, 0).in_tz("America/New_York")?;
2075 /// let one_day_later = zdt.checked_add(1.day())?;
2076 /// assert_eq!(
2077 /// one_day_later.to_string(),
2078 /// "2024-03-10T03:30:00-04:00[America/New_York]",
2079 /// );
2080 ///
2081 /// # Ok::<(), Box<dyn std::error::Error>>(())
2082 /// ```
2083 ///
2084 /// And this example demonstrates the "compatible" strategy when arithmetic
2085 /// results in an ambiguous datetime in a fold. In this case, we make use
2086 /// of the fact that the 1 o'clock hour was repeated on `2024-11-03`.
2087 ///
2088 /// ```
2089 /// use jiff::{civil::date, ToSpan};
2090 ///
2091 /// let zdt = date(2024, 11, 2).at(1, 30, 0, 0).in_tz("America/New_York")?;
2092 /// let one_day_later = zdt.checked_add(1.day())?;
2093 /// assert_eq!(
2094 /// one_day_later.to_string(),
2095 /// // This corresponds to the first iteration of the 1 o'clock hour,
2096 /// // i.e., when DST is still in effect. It's the earlier time.
2097 /// "2024-11-03T01:30:00-04:00[America/New_York]",
2098 /// );
2099 ///
2100 /// # Ok::<(), Box<dyn std::error::Error>>(())
2101 /// ```
2102 ///
2103 /// # Example: negative spans are supported
2104 ///
2105 /// ```
2106 /// use jiff::{civil::date, ToSpan};
2107 ///
2108 /// let zdt = date(2024, 3, 31)
2109 /// .at(19, 5, 59, 999_999_999)
2110 /// .in_tz("America/New_York")?;
2111 /// assert_eq!(
2112 /// zdt.checked_add(-1.months())?,
2113 /// date(2024, 2, 29).
2114 /// at(19, 5, 59, 999_999_999)
2115 /// .in_tz("America/New_York")?,
2116 /// );
2117 ///
2118 /// # Ok::<(), Box<dyn std::error::Error>>(())
2119 /// ```
2120 ///
2121 /// # Example: error on overflow
2122 ///
2123 /// ```
2124 /// use jiff::{civil::date, ToSpan};
2125 ///
2126 /// let zdt = date(2024, 3, 31).at(13, 13, 13, 13).in_tz("America/New_York")?;
2127 /// assert!(zdt.checked_add(9000.years()).is_err());
2128 /// assert!(zdt.checked_add(-19000.years()).is_err());
2129 ///
2130 /// # Ok::<(), Box<dyn std::error::Error>>(())
2131 /// ```
2132 ///
2133 /// # Example: adding absolute durations
2134 ///
2135 /// This shows how to add signed and unsigned absolute durations to a
2136 /// `Zoned`.
2137 ///
2138 /// ```
2139 /// use std::time::Duration;
2140 ///
2141 /// use jiff::{civil::date, SignedDuration};
2142 ///
2143 /// let zdt = date(2024, 2, 29).at(0, 0, 0, 0).in_tz("US/Eastern")?;
2144 ///
2145 /// let dur = SignedDuration::from_hours(25);
2146 /// assert_eq!(
2147 /// zdt.checked_add(dur)?,
2148 /// date(2024, 3, 1).at(1, 0, 0, 0).in_tz("US/Eastern")?,
2149 /// );
2150 /// assert_eq!(
2151 /// zdt.checked_add(-dur)?,
2152 /// date(2024, 2, 27).at(23, 0, 0, 0).in_tz("US/Eastern")?,
2153 /// );
2154 ///
2155 /// let dur = Duration::from_secs(25 * 60 * 60);
2156 /// assert_eq!(
2157 /// zdt.checked_add(dur)?,
2158 /// date(2024, 3, 1).at(1, 0, 0, 0).in_tz("US/Eastern")?,
2159 /// );
2160 /// // One cannot negate an unsigned duration,
2161 /// // but you can subtract it!
2162 /// assert_eq!(
2163 /// zdt.checked_sub(dur)?,
2164 /// date(2024, 2, 27).at(23, 0, 0, 0).in_tz("US/Eastern")?,
2165 /// );
2166 ///
2167 /// # Ok::<(), Box<dyn std::error::Error>>(())
2168 /// ```
2169 #[inline]
2170 pub fn checked_add<A: Into<ZonedArithmetic>>(
2171 &self,
2172 duration: A,
2173 ) -> Result<Zoned, Error> {
2174 let duration: ZonedArithmetic = duration.into();
2175 duration.checked_add(self)
2176 }
2177
2178 #[inline]
2179 fn checked_add_span(&self, span: Span) -> Result<Zoned, Error> {
2180 let span_calendar = span.only_calendar();
2181 // If our duration only consists of "time" (hours, minutes, etc), then
2182 // we can short-circuit and do timestamp math. This also avoids dealing
2183 // with ambiguity and time zone bullshit.
2184 if span_calendar.is_zero() {
2185 return self
2186 .timestamp()
2187 .checked_add(span)
2188 .map(|ts| ts.to_zoned(self.time_zone().clone()))
2189 .with_context(|| {
2190 err!(
2191 "failed to add span {span} to timestamp {timestamp} \
2192 from zoned datetime {zoned}",
2193 timestamp = self.timestamp(),
2194 zoned = self,
2195 )
2196 });
2197 }
2198 let span_time = span.only_time();
2199 let dt =
2200 self.datetime().checked_add(span_calendar).with_context(|| {
2201 err!(
2202 "failed to add span {span_calendar} to datetime {dt} \
2203 from zoned datetime {zoned}",
2204 dt = self.datetime(),
2205 zoned = self,
2206 )
2207 })?;
2208
2209 let tz = self.time_zone();
2210 let mut ts =
2211 tz.to_ambiguous_timestamp(dt).compatible().with_context(|| {
2212 err!(
2213 "failed to convert civil datetime {dt} to timestamp \
2214 with time zone {tz}",
2215 tz = self.time_zone().diagnostic_name(),
2216 )
2217 })?;
2218 ts = ts.checked_add(span_time).with_context(|| {
2219 err!(
2220 "failed to add span {span_time} to timestamp {ts} \
2221 (which was created from {dt})"
2222 )
2223 })?;
2224 Ok(ts.to_zoned(tz.clone()))
2225 }
2226
2227 #[inline]
2228 fn checked_add_duration(
2229 &self,
2230 duration: SignedDuration,
2231 ) -> Result<Zoned, Error> {
2232 self.timestamp()
2233 .checked_add(duration)
2234 .map(|ts| ts.to_zoned(self.time_zone().clone()))
2235 }
2236
2237 /// This routine is identical to [`Zoned::checked_add`] with the
2238 /// duration negated.
2239 ///
2240 /// # Errors
2241 ///
2242 /// This has the same error conditions as [`Zoned::checked_add`].
2243 ///
2244 /// # Example
2245 ///
2246 /// This routine can be used via the `-` operator. Note though that if it
2247 /// fails, it will result in a panic. Note that we use `&zdt - ...` instead
2248 /// of `zdt - ...` since `Sub` is implemented for `&Zoned` and not `Zoned`.
2249 /// This is because `Zoned` is not `Copy`.
2250 ///
2251 /// ```
2252 /// use std::time::Duration;
2253 ///
2254 /// use jiff::{civil::date, SignedDuration, ToSpan};
2255 ///
2256 /// let zdt = date(1995, 12, 7)
2257 /// .at(3, 24, 30, 3_500)
2258 /// .in_tz("America/New_York")?;
2259 /// let got = &zdt - 20.years().months(4).nanoseconds(500);
2260 /// assert_eq!(
2261 /// got,
2262 /// date(1975, 8, 7).at(3, 24, 30, 3_000).in_tz("America/New_York")?,
2263 /// );
2264 ///
2265 /// let dur = SignedDuration::new(24 * 60 * 60, 500);
2266 /// assert_eq!(
2267 /// &zdt - dur,
2268 /// date(1995, 12, 6).at(3, 24, 30, 3_000).in_tz("America/New_York")?,
2269 /// );
2270 ///
2271 /// let dur = Duration::new(24 * 60 * 60, 500);
2272 /// assert_eq!(
2273 /// &zdt - dur,
2274 /// date(1995, 12, 6).at(3, 24, 30, 3_000).in_tz("America/New_York")?,
2275 /// );
2276 ///
2277 /// # Ok::<(), Box<dyn std::error::Error>>(())
2278 /// ```
2279 #[inline]
2280 pub fn checked_sub<A: Into<ZonedArithmetic>>(
2281 &self,
2282 duration: A,
2283 ) -> Result<Zoned, Error> {
2284 let duration: ZonedArithmetic = duration.into();
2285 duration.checked_neg().and_then(|za| za.checked_add(self))
2286 }
2287
2288 /// This routine is identical to [`Zoned::checked_add`], except the
2289 /// result saturates on overflow. That is, instead of overflow, either
2290 /// [`Timestamp::MIN`] or [`Timestamp::MAX`] (in this `Zoned` value's time
2291 /// zone) is returned.
2292 ///
2293 /// # Properties
2294 ///
2295 /// The properties of this routine are identical to [`Zoned::checked_add`],
2296 /// except that if saturation occurs, then the result is not reversible.
2297 ///
2298 /// # Example
2299 ///
2300 /// ```
2301 /// use jiff::{civil::date, SignedDuration, Timestamp, ToSpan};
2302 ///
2303 /// let zdt = date(2024, 3, 31).at(13, 13, 13, 13).in_tz("America/New_York")?;
2304 /// assert_eq!(Timestamp::MAX, zdt.saturating_add(9000.years()).timestamp());
2305 /// assert_eq!(Timestamp::MIN, zdt.saturating_add(-19000.years()).timestamp());
2306 /// assert_eq!(Timestamp::MAX, zdt.saturating_add(SignedDuration::MAX).timestamp());
2307 /// assert_eq!(Timestamp::MIN, zdt.saturating_add(SignedDuration::MIN).timestamp());
2308 /// assert_eq!(Timestamp::MAX, zdt.saturating_add(std::time::Duration::MAX).timestamp());
2309 ///
2310 /// # Ok::<(), Box<dyn std::error::Error>>(())
2311 /// ```
2312 #[inline]
2313 pub fn saturating_add<A: Into<ZonedArithmetic>>(
2314 &self,
2315 duration: A,
2316 ) -> Zoned {
2317 let duration: ZonedArithmetic = duration.into();
2318 self.checked_add(duration).unwrap_or_else(|_| {
2319 let ts = if duration.is_negative() {
2320 Timestamp::MIN
2321 } else {
2322 Timestamp::MAX
2323 };
2324 ts.to_zoned(self.time_zone().clone())
2325 })
2326 }
2327
2328 /// This routine is identical to [`Zoned::saturating_add`] with the span
2329 /// parameter negated.
2330 ///
2331 /// # Example
2332 ///
2333 /// ```
2334 /// use jiff::{civil::date, SignedDuration, Timestamp, ToSpan};
2335 ///
2336 /// let zdt = date(2024, 3, 31).at(13, 13, 13, 13).in_tz("America/New_York")?;
2337 /// assert_eq!(Timestamp::MIN, zdt.saturating_sub(19000.years()).timestamp());
2338 /// assert_eq!(Timestamp::MAX, zdt.saturating_sub(-9000.years()).timestamp());
2339 /// assert_eq!(Timestamp::MIN, zdt.saturating_sub(SignedDuration::MAX).timestamp());
2340 /// assert_eq!(Timestamp::MAX, zdt.saturating_sub(SignedDuration::MIN).timestamp());
2341 /// assert_eq!(Timestamp::MIN, zdt.saturating_sub(std::time::Duration::MAX).timestamp());
2342 ///
2343 /// # Ok::<(), Box<dyn std::error::Error>>(())
2344 /// ```
2345 #[inline]
2346 pub fn saturating_sub<A: Into<ZonedArithmetic>>(
2347 &self,
2348 duration: A,
2349 ) -> Zoned {
2350 let duration: ZonedArithmetic = duration.into();
2351 let Ok(duration) = duration.checked_neg() else {
2352 return Timestamp::MIN.to_zoned(self.time_zone().clone());
2353 };
2354 self.saturating_add(duration)
2355 }
2356
2357 /// Returns a span representing the elapsed time from this zoned datetime
2358 /// until the given `other` zoned datetime.
2359 ///
2360 /// When `other` occurs before this datetime, then the span returned will
2361 /// be negative.
2362 ///
2363 /// Depending on the input provided, the span returned is rounded. It may
2364 /// also be balanced up to bigger units than the default. By default, the
2365 /// span returned is balanced such that the biggest possible unit is hours.
2366 ///
2367 /// This operation is configured by providing a [`ZonedDifference`]
2368 /// value. Since this routine accepts anything that implements
2369 /// `Into<ZonedDifference>`, once can pass a `&Zoned` directly.
2370 /// One can also pass a `(Unit, &Zoned)`, where `Unit` is treated as
2371 /// [`ZonedDifference::largest`].
2372 ///
2373 /// # Properties
2374 ///
2375 /// It is guaranteed that if the returned span is subtracted from `other`,
2376 /// and if no rounding is requested, and if the largest unit requested
2377 /// is at most `Unit::Hour`, then the original zoned datetime will be
2378 /// returned.
2379 ///
2380 /// This routine is equivalent to `self.since(other).map(|span| -span)`
2381 /// if no rounding options are set. If rounding options are set, then
2382 /// it's equivalent to
2383 /// `self.since(other_without_rounding_options).map(|span| -span)`,
2384 /// followed by a call to [`Span::round`] with the appropriate rounding
2385 /// options set. This is because the negation of a span can result in
2386 /// different rounding results depending on the rounding mode.
2387 ///
2388 /// # Errors
2389 ///
2390 /// An error can occur in some cases when the requested configuration
2391 /// would result in a span that is beyond allowable limits. For example,
2392 /// the nanosecond component of a span cannot represent the span of
2393 /// time between the minimum and maximum zoned datetime supported by Jiff.
2394 /// Therefore, if one requests a span with its largest unit set to
2395 /// [`Unit::Nanosecond`], then it's possible for this routine to fail.
2396 ///
2397 /// An error can also occur if `ZonedDifference` is misconfigured. For
2398 /// example, if the smallest unit provided is bigger than the largest unit.
2399 ///
2400 /// An error can also occur if units greater than `Unit::Hour` are
2401 /// requested _and_ if the time zones in the provided zoned datetimes
2402 /// are distinct. (See [`TimeZone`]'s section on equality for details on
2403 /// how equality is determined.) This error occurs because the length of
2404 /// a day may vary depending on the time zone. To work around this
2405 /// restriction, convert one or both of the zoned datetimes into the same
2406 /// time zone.
2407 ///
2408 /// It is guaranteed that if one provides a datetime with the default
2409 /// [`ZonedDifference`] configuration, then this routine will never
2410 /// fail.
2411 ///
2412 /// # Example
2413 ///
2414 /// ```
2415 /// use jiff::{civil::date, ToSpan};
2416 ///
2417 /// let earlier = date(2006, 8, 24).at(22, 30, 0, 0).in_tz("America/New_York")?;
2418 /// let later = date(2019, 1, 31).at(21, 0, 0, 0).in_tz("America/New_York")?;
2419 /// assert_eq!(
2420 /// earlier.until(&later)?,
2421 /// 109_031.hours().minutes(30).fieldwise(),
2422 /// );
2423 ///
2424 /// // Flipping the dates is fine, but you'll get a negative span.
2425 /// assert_eq!(
2426 /// later.until(&earlier)?,
2427 /// -109_031.hours().minutes(30).fieldwise(),
2428 /// );
2429 ///
2430 /// # Ok::<(), Box<dyn std::error::Error>>(())
2431 /// ```
2432 ///
2433 /// # Example: using bigger units
2434 ///
2435 /// This example shows how to expand the span returned to bigger units.
2436 /// This makes use of a `From<(Unit, &Zoned)> for ZonedDifference`
2437 /// trait implementation.
2438 ///
2439 /// ```
2440 /// use jiff::{civil::date, Unit, ToSpan};
2441 ///
2442 /// let zdt1 = date(1995, 12, 07).at(3, 24, 30, 3500).in_tz("America/New_York")?;
2443 /// let zdt2 = date(2019, 01, 31).at(15, 30, 0, 0).in_tz("America/New_York")?;
2444 ///
2445 /// // The default limits durations to using "hours" as the biggest unit.
2446 /// let span = zdt1.until(&zdt2)?;
2447 /// assert_eq!(span.to_string(), "PT202956H5M29.9999965S");
2448 ///
2449 /// // But we can ask for units all the way up to years.
2450 /// let span = zdt1.until((Unit::Year, &zdt2))?;
2451 /// assert_eq!(format!("{span:#}"), "23y 1mo 24d 12h 5m 29s 999ms 996µs 500ns");
2452 /// # Ok::<(), Box<dyn std::error::Error>>(())
2453 /// ```
2454 ///
2455 /// # Example: rounding the result
2456 ///
2457 /// This shows how one might find the difference between two zoned
2458 /// datetimes and have the result rounded such that sub-seconds are
2459 /// removed.
2460 ///
2461 /// In this case, we need to hand-construct a [`ZonedDifference`]
2462 /// in order to gain full configurability.
2463 ///
2464 /// ```
2465 /// use jiff::{civil::date, Unit, ToSpan, ZonedDifference};
2466 ///
2467 /// let zdt1 = date(1995, 12, 07).at(3, 24, 30, 3500).in_tz("America/New_York")?;
2468 /// let zdt2 = date(2019, 01, 31).at(15, 30, 0, 0).in_tz("America/New_York")?;
2469 ///
2470 /// let span = zdt1.until(
2471 /// ZonedDifference::from(&zdt2).smallest(Unit::Second),
2472 /// )?;
2473 /// assert_eq!(format!("{span:#}"), "202956h 5m 29s");
2474 ///
2475 /// // We can combine smallest and largest units too!
2476 /// let span = zdt1.until(
2477 /// ZonedDifference::from(&zdt2)
2478 /// .smallest(Unit::Second)
2479 /// .largest(Unit::Year),
2480 /// )?;
2481 /// assert_eq!(span.to_string(), "P23Y1M24DT12H5M29S");
2482 ///
2483 /// # Ok::<(), Box<dyn std::error::Error>>(())
2484 /// ```
2485 ///
2486 /// # Example: units biggers than days inhibit reversibility
2487 ///
2488 /// If you ask for units bigger than hours, then adding the span returned
2489 /// to the `other` zoned datetime is not guaranteed to result in the
2490 /// original zoned datetime. For example:
2491 ///
2492 /// ```
2493 /// use jiff::{civil::date, Unit, ToSpan};
2494 ///
2495 /// let zdt1 = date(2024, 3, 2).at(0, 0, 0, 0).in_tz("America/New_York")?;
2496 /// let zdt2 = date(2024, 5, 1).at(0, 0, 0, 0).in_tz("America/New_York")?;
2497 ///
2498 /// let span = zdt1.until((Unit::Month, &zdt2))?;
2499 /// assert_eq!(span, 1.month().days(29).fieldwise());
2500 /// let maybe_original = zdt2.checked_sub(span)?;
2501 /// // Not the same as the original datetime!
2502 /// assert_eq!(
2503 /// maybe_original,
2504 /// date(2024, 3, 3).at(0, 0, 0, 0).in_tz("America/New_York")?,
2505 /// );
2506 ///
2507 /// // But in the default configuration, hours are always the biggest unit
2508 /// // and reversibility is guaranteed.
2509 /// let span = zdt1.until(&zdt2)?;
2510 /// assert_eq!(span.to_string(), "PT1439H");
2511 /// let is_original = zdt2.checked_sub(span)?;
2512 /// assert_eq!(is_original, zdt1);
2513 ///
2514 /// # Ok::<(), Box<dyn std::error::Error>>(())
2515 /// ```
2516 ///
2517 /// This occurs because spans are added as if by adding the biggest units
2518 /// first, and then the smaller units. Because months vary in length,
2519 /// their meaning can change depending on how the span is added. In this
2520 /// case, adding one month to `2024-03-02` corresponds to 31 days, but
2521 /// subtracting one month from `2024-05-01` corresponds to 30 days.
2522 #[inline]
2523 pub fn until<'a, A: Into<ZonedDifference<'a>>>(
2524 &self,
2525 other: A,
2526 ) -> Result<Span, Error> {
2527 let args: ZonedDifference = other.into();
2528 let span = args.until_with_largest_unit(self)?;
2529 if args.rounding_may_change_span() {
2530 span.round(args.round.relative(self))
2531 } else {
2532 Ok(span)
2533 }
2534 }
2535
2536 /// This routine is identical to [`Zoned::until`], but the order of the
2537 /// parameters is flipped.
2538 ///
2539 /// # Errors
2540 ///
2541 /// This has the same error conditions as [`Zoned::until`].
2542 ///
2543 /// # Example
2544 ///
2545 /// This routine can be used via the `-` operator. Since the default
2546 /// configuration is used and because a `Span` can represent the difference
2547 /// between any two possible zoned datetimes, it will never panic. Note
2548 /// that we use `&zdt1 - &zdt2` instead of `zdt1 - zdt2` since `Sub` is
2549 /// implemented for `&Zoned` and not `Zoned`. This is because `Zoned` is
2550 /// not `Copy`.
2551 ///
2552 /// ```
2553 /// use jiff::{civil::date, ToSpan};
2554 ///
2555 /// let earlier = date(2006, 8, 24).at(22, 30, 0, 0).in_tz("America/New_York")?;
2556 /// let later = date(2019, 1, 31).at(21, 0, 0, 0).in_tz("America/New_York")?;
2557 /// assert_eq!(&later - &earlier, 109_031.hours().minutes(30).fieldwise());
2558 ///
2559 /// # Ok::<(), Box<dyn std::error::Error>>(())
2560 /// ```
2561 #[inline]
2562 pub fn since<'a, A: Into<ZonedDifference<'a>>>(
2563 &self,
2564 other: A,
2565 ) -> Result<Span, Error> {
2566 let args: ZonedDifference = other.into();
2567 let span = -args.until_with_largest_unit(self)?;
2568 if args.rounding_may_change_span() {
2569 span.round(args.round.relative(self))
2570 } else {
2571 Ok(span)
2572 }
2573 }
2574
2575 /// Returns an absolute duration representing the elapsed time from this
2576 /// zoned datetime until the given `other` zoned datetime.
2577 ///
2578 /// When `other` occurs before this zoned datetime, then the duration
2579 /// returned will be negative.
2580 ///
2581 /// Unlike [`Zoned::until`], this always returns a duration
2582 /// corresponding to a 96-bit integer of nanoseconds between two
2583 /// zoned datetimes.
2584 ///
2585 /// # Fallibility
2586 ///
2587 /// This routine never panics or returns an error. Since there are no
2588 /// configuration options that can be incorrectly provided, no error is
2589 /// possible when calling this routine. In contrast, [`Zoned::until`]
2590 /// can return an error in some cases due to misconfiguration. But like
2591 /// this routine, [`Zoned::until`] never panics or returns an error in
2592 /// its default configuration.
2593 ///
2594 /// # When should I use this versus [`Zoned::until`]?
2595 ///
2596 /// See the type documentation for [`SignedDuration`] for the section on
2597 /// when one should use [`Span`] and when one should use `SignedDuration`.
2598 /// In short, use `Span` (and therefore `Timestamp::until`) unless you have
2599 /// a specific reason to do otherwise.
2600 ///
2601 /// # Example
2602 ///
2603 /// ```
2604 /// use jiff::{civil::date, SignedDuration};
2605 ///
2606 /// let earlier = date(2006, 8, 24).at(22, 30, 0, 0).in_tz("US/Eastern")?;
2607 /// let later = date(2019, 1, 31).at(21, 0, 0, 0).in_tz("US/Eastern")?;
2608 /// assert_eq!(
2609 /// earlier.duration_until(&later),
2610 /// SignedDuration::from_hours(109_031) + SignedDuration::from_mins(30),
2611 /// );
2612 ///
2613 /// // Flipping the dates is fine, but you'll get a negative span.
2614 /// assert_eq!(
2615 /// later.duration_until(&earlier),
2616 /// -SignedDuration::from_hours(109_031) + -SignedDuration::from_mins(30),
2617 /// );
2618 ///
2619 /// # Ok::<(), Box<dyn std::error::Error>>(())
2620 /// ```
2621 ///
2622 /// # Example: difference with [`Zoned::until`]
2623 ///
2624 /// The main difference between this routine and `Zoned::until` is that
2625 /// the latter can return units other than a 96-bit integer of nanoseconds.
2626 /// While a 96-bit integer of nanoseconds can be converted into other units
2627 /// like hours, this can only be done for uniform units. (Uniform units are
2628 /// units for which each individual unit always corresponds to the same
2629 /// elapsed time regardless of the datetime it is relative to.) This can't
2630 /// be done for units like years, months or days.
2631 ///
2632 /// ```
2633 /// use jiff::{civil::date, SignedDuration, Span, SpanRound, ToSpan, Unit};
2634 ///
2635 /// let zdt1 = date(2024, 3, 10).at(0, 0, 0, 0).in_tz("US/Eastern")?;
2636 /// let zdt2 = date(2024, 3, 11).at(0, 0, 0, 0).in_tz("US/Eastern")?;
2637 ///
2638 /// let span = zdt1.until((Unit::Day, &zdt2))?;
2639 /// assert_eq!(format!("{span:#}"), "1d");
2640 ///
2641 /// let duration = zdt1.duration_until(&zdt2);
2642 /// // This day was only 23 hours long!
2643 /// assert_eq!(duration, SignedDuration::from_hours(23));
2644 /// // There's no way to extract years, months or days from the signed
2645 /// // duration like one might extract hours (because every hour
2646 /// // is the same length). Instead, you actually have to convert
2647 /// // it to a span and then balance it by providing a relative date!
2648 /// let options = SpanRound::new().largest(Unit::Day).relative(&zdt1);
2649 /// let span = Span::try_from(duration)?.round(options)?;
2650 /// assert_eq!(format!("{span:#}"), "1d");
2651 ///
2652 /// # Ok::<(), Box<dyn std::error::Error>>(())
2653 /// ```
2654 ///
2655 /// # Example: getting an unsigned duration
2656 ///
2657 /// If you're looking to find the duration between two zoned datetimes as
2658 /// a [`std::time::Duration`], you'll need to use this method to get a
2659 /// [`SignedDuration`] and then convert it to a `std::time::Duration`:
2660 ///
2661 /// ```
2662 /// use std::time::Duration;
2663 ///
2664 /// use jiff::civil::date;
2665 ///
2666 /// let zdt1 = date(2024, 7, 1).at(0, 0, 0, 0).in_tz("US/Eastern")?;
2667 /// let zdt2 = date(2024, 8, 1).at(0, 0, 0, 0).in_tz("US/Eastern")?;
2668 /// let duration = Duration::try_from(zdt1.duration_until(&zdt2))?;
2669 /// assert_eq!(duration, Duration::from_secs(31 * 24 * 60 * 60));
2670 ///
2671 /// // Note that unsigned durations cannot represent all
2672 /// // possible differences! If the duration would be negative,
2673 /// // then the conversion fails:
2674 /// assert!(Duration::try_from(zdt2.duration_until(&zdt1)).is_err());
2675 ///
2676 /// # Ok::<(), Box<dyn std::error::Error>>(())
2677 /// ```
2678 #[inline]
2679 pub fn duration_until(&self, other: &Zoned) -> SignedDuration {
2680 SignedDuration::zoned_until(self, other)
2681 }
2682
2683 /// This routine is identical to [`Zoned::duration_until`], but the
2684 /// order of the parameters is flipped.
2685 ///
2686 /// # Example
2687 ///
2688 /// ```
2689 /// use jiff::{civil::date, SignedDuration};
2690 ///
2691 /// let earlier = date(2006, 8, 24).at(22, 30, 0, 0).in_tz("US/Eastern")?;
2692 /// let later = date(2019, 1, 31).at(21, 0, 0, 0).in_tz("US/Eastern")?;
2693 /// assert_eq!(
2694 /// later.duration_since(&earlier),
2695 /// SignedDuration::from_hours(109_031) + SignedDuration::from_mins(30),
2696 /// );
2697 ///
2698 /// # Ok::<(), Box<dyn std::error::Error>>(())
2699 /// ```
2700 #[inline]
2701 pub fn duration_since(&self, other: &Zoned) -> SignedDuration {
2702 SignedDuration::zoned_until(other, self)
2703 }
2704
2705 /// Rounds this zoned datetime according to the [`ZonedRound`]
2706 /// configuration given.
2707 ///
2708 /// The principal option is [`ZonedRound::smallest`], which allows one to
2709 /// configure the smallest units in the returned zoned datetime. Rounding
2710 /// is what determines whether that unit should keep its current value
2711 /// or whether it should be incremented. Moreover, the amount it should
2712 /// be incremented can be configured via [`ZonedRound::increment`].
2713 /// Finally, the rounding strategy itself can be configured via
2714 /// [`ZonedRound::mode`].
2715 ///
2716 /// Note that this routine is generic and accepts anything that
2717 /// implements `Into<ZonedRound>`. Some notable implementations are:
2718 ///
2719 /// * `From<Unit> for ZonedRound`, which will automatically create a
2720 /// `ZonedRound::new().smallest(unit)` from the unit provided.
2721 /// * `From<(Unit, i64)> for ZonedRound`, which will automatically
2722 /// create a `ZonedRound::new().smallest(unit).increment(number)` from
2723 /// the unit and increment provided.
2724 ///
2725 /// # Errors
2726 ///
2727 /// This returns an error if the smallest unit configured on the given
2728 /// [`ZonedRound`] is bigger than days. An error is also returned if
2729 /// the rounding increment is greater than 1 when the units are days.
2730 /// (Currently, rounding to the nearest week, month or year is not
2731 /// supported.)
2732 ///
2733 /// When the smallest unit is less than days, the rounding increment must
2734 /// divide evenly into the next highest unit after the smallest unit
2735 /// configured (and must not be equivalent to it). For example, if the
2736 /// smallest unit is [`Unit::Nanosecond`], then *some* of the valid values
2737 /// for the rounding increment are `1`, `2`, `4`, `5`, `100` and `500`.
2738 /// Namely, any integer that divides evenly into `1,000` nanoseconds since
2739 /// there are `1,000` nanoseconds in the next highest unit (microseconds).
2740 ///
2741 /// This can also return an error in some cases where rounding would
2742 /// require arithmetic that exceeds the maximum zoned datetime value.
2743 ///
2744 /// # Example
2745 ///
2746 /// This is a basic example that demonstrates rounding a zoned datetime
2747 /// to the nearest day. This also demonstrates calling this method with
2748 /// the smallest unit directly, instead of constructing a `ZonedRound`
2749 /// manually.
2750 ///
2751 /// ```
2752 /// use jiff::{civil::date, Unit};
2753 ///
2754 /// // rounds up
2755 /// let zdt = date(2024, 6, 19).at(15, 0, 0, 0).in_tz("America/New_York")?;
2756 /// assert_eq!(
2757 /// zdt.round(Unit::Day)?,
2758 /// date(2024, 6, 20).at(0, 0, 0, 0).in_tz("America/New_York")?,
2759 /// );
2760 ///
2761 /// // rounds down
2762 /// let zdt = date(2024, 6, 19).at(10, 0, 0, 0).in_tz("America/New_York")?;
2763 /// assert_eq!(
2764 /// zdt.round(Unit::Day)?,
2765 /// date(2024, 6, 19).at(0, 0, 0, 0).in_tz("America/New_York")?,
2766 /// );
2767 ///
2768 /// # Ok::<(), Box<dyn std::error::Error>>(())
2769 /// ```
2770 ///
2771 /// # Example: changing the rounding mode
2772 ///
2773 /// The default rounding mode is [`RoundMode::HalfExpand`], which
2774 /// breaks ties by rounding away from zero. But other modes like
2775 /// [`RoundMode::Trunc`] can be used too:
2776 ///
2777 /// ```
2778 /// use jiff::{civil::date, RoundMode, Unit, Zoned, ZonedRound};
2779 ///
2780 /// let zdt = date(2024, 6, 19).at(15, 0, 0, 0).in_tz("America/New_York")?;
2781 /// assert_eq!(
2782 /// zdt.round(Unit::Day)?,
2783 /// date(2024, 6, 20).at(0, 0, 0, 0).in_tz("America/New_York")?,
2784 /// );
2785 /// // The default will round up to the next day for any time past noon (as
2786 /// // shown above), but using truncation rounding will always round down.
2787 /// assert_eq!(
2788 /// zdt.round(
2789 /// ZonedRound::new().smallest(Unit::Day).mode(RoundMode::Trunc),
2790 /// )?,
2791 /// date(2024, 6, 19).at(0, 0, 0, 0).in_tz("America/New_York")?,
2792 /// );
2793 ///
2794 /// # Ok::<(), Box<dyn std::error::Error>>(())
2795 /// ```
2796 ///
2797 /// # Example: rounding to the nearest 5 minute increment
2798 ///
2799 /// ```
2800 /// use jiff::{civil::date, Unit};
2801 ///
2802 /// // rounds down
2803 /// let zdt = date(2024, 6, 19)
2804 /// .at(15, 27, 29, 999_999_999)
2805 /// .in_tz("America/New_York")?;
2806 /// assert_eq!(
2807 /// zdt.round((Unit::Minute, 5))?,
2808 /// date(2024, 6, 19).at(15, 25, 0, 0).in_tz("America/New_York")?,
2809 /// );
2810 /// // rounds up
2811 /// let zdt = date(2024, 6, 19)
2812 /// .at(15, 27, 30, 0)
2813 /// .in_tz("America/New_York")?;
2814 /// assert_eq!(
2815 /// zdt.round((Unit::Minute, 5))?,
2816 /// date(2024, 6, 19).at(15, 30, 0, 0).in_tz("America/New_York")?,
2817 /// );
2818 ///
2819 /// # Ok::<(), Box<dyn std::error::Error>>(())
2820 /// ```
2821 ///
2822 /// # Example: behavior near time zone transitions
2823 ///
2824 /// When rounding this zoned datetime near time zone transitions (such as
2825 /// DST), the "sensible" thing is done by default. Namely, rounding will
2826 /// jump to the closest instant, even if the change in civil clock time is
2827 /// large. For example, when rounding up into a gap, the civil clock time
2828 /// will jump over the gap, but the corresponding change in the instant is
2829 /// as one might expect:
2830 ///
2831 /// ```
2832 /// use jiff::{Unit, Zoned};
2833 ///
2834 /// let zdt1: Zoned = "2024-03-10T01:59:00-05[America/New_York]".parse()?;
2835 /// let zdt2 = zdt1.round(Unit::Hour)?;
2836 /// assert_eq!(
2837 /// zdt2.to_string(),
2838 /// "2024-03-10T03:00:00-04:00[America/New_York]",
2839 /// );
2840 ///
2841 /// # Ok::<(), Box<dyn std::error::Error>>(())
2842 /// ```
2843 ///
2844 /// Similarly, when rounding inside a fold, rounding will respect whether
2845 /// it's the first or second time the clock has repeated the hour. For the
2846 /// DST transition in New York on `2024-11-03` from offset `-04` to `-05`,
2847 /// here is an example that rounds the first 1 o'clock hour:
2848 ///
2849 /// ```
2850 /// use jiff::{Unit, Zoned};
2851 ///
2852 /// let zdt1: Zoned = "2024-11-03T01:59:01-04[America/New_York]".parse()?;
2853 /// let zdt2 = zdt1.round(Unit::Minute)?;
2854 /// assert_eq!(
2855 /// zdt2.to_string(),
2856 /// "2024-11-03T01:59:00-04:00[America/New_York]",
2857 /// );
2858 ///
2859 /// # Ok::<(), Box<dyn std::error::Error>>(())
2860 /// ```
2861 ///
2862 /// And now the second 1 o'clock hour. Notice how the rounded result stays
2863 /// in the second 1 o'clock hour.
2864 ///
2865 /// ```
2866 /// use jiff::{Unit, Zoned};
2867 ///
2868 /// let zdt1: Zoned = "2024-11-03T01:59:01-05[America/New_York]".parse()?;
2869 /// let zdt2 = zdt1.round(Unit::Minute)?;
2870 /// assert_eq!(
2871 /// zdt2.to_string(),
2872 /// "2024-11-03T01:59:00-05:00[America/New_York]",
2873 /// );
2874 ///
2875 /// # Ok::<(), Box<dyn std::error::Error>>(())
2876 /// ```
2877 ///
2878 /// # Example: overflow error
2879 ///
2880 /// This example demonstrates that it's possible for this operation to
2881 /// result in an error from zoned datetime arithmetic overflow.
2882 ///
2883 /// ```
2884 /// use jiff::{Timestamp, Unit};
2885 ///
2886 /// let zdt = Timestamp::MAX.in_tz("America/New_York")?;
2887 /// assert!(zdt.round(Unit::Day).is_err());
2888 ///
2889 /// # Ok::<(), Box<dyn std::error::Error>>(())
2890 /// ```
2891 ///
2892 /// This occurs because rounding to the nearest day for the maximum
2893 /// timestamp would result in rounding up to the next day. But the next day
2894 /// is greater than the maximum, and so this returns an error.
2895 #[inline]
2896 pub fn round<R: Into<ZonedRound>>(
2897 &self,
2898 options: R,
2899 ) -> Result<Zoned, Error> {
2900 let options: ZonedRound = options.into();
2901 options.round(self)
2902 }
2903
2904 /*
2905 /// Return an iterator of periodic zoned datetimes determined by the given
2906 /// span.
2907 ///
2908 /// The given span may be negative, in which case, the iterator will move
2909 /// backwards through time. The iterator won't stop until either the span
2910 /// itself overflows, or it would otherwise exceed the minimum or maximum
2911 /// `Zoned` value.
2912 ///
2913 /// # Example: when to check a glucose monitor
2914 ///
2915 /// When my cat had diabetes, my veterinarian installed a glucose monitor
2916 /// and instructed me to scan it about every 5 hours. This example lists
2917 /// all of the times I need to scan it for the 2 days following its
2918 /// installation:
2919 ///
2920 /// ```
2921 /// use jiff::{civil::datetime, ToSpan};
2922 ///
2923 /// let start = datetime(2023, 7, 15, 16, 30, 0, 0).in_tz("America/New_York")?;
2924 /// let end = start.checked_add(2.days())?;
2925 /// let mut scan_times = vec![];
2926 /// for zdt in start.series(5.hours()).take_while(|zdt| zdt <= end) {
2927 /// scan_times.push(zdt.datetime());
2928 /// }
2929 /// assert_eq!(scan_times, vec![
2930 /// datetime(2023, 7, 15, 16, 30, 0, 0),
2931 /// datetime(2023, 7, 15, 21, 30, 0, 0),
2932 /// datetime(2023, 7, 16, 2, 30, 0, 0),
2933 /// datetime(2023, 7, 16, 7, 30, 0, 0),
2934 /// datetime(2023, 7, 16, 12, 30, 0, 0),
2935 /// datetime(2023, 7, 16, 17, 30, 0, 0),
2936 /// datetime(2023, 7, 16, 22, 30, 0, 0),
2937 /// datetime(2023, 7, 17, 3, 30, 0, 0),
2938 /// datetime(2023, 7, 17, 8, 30, 0, 0),
2939 /// datetime(2023, 7, 17, 13, 30, 0, 0),
2940 /// ]);
2941 ///
2942 /// # Ok::<(), Box<dyn std::error::Error>>(())
2943 /// ```
2944 ///
2945 /// # Example
2946 ///
2947 /// BREADCRUMBS: Maybe just remove ZonedSeries for now..?
2948 ///
2949 /// ```
2950 /// use jiff::{civil::date, ToSpan};
2951 ///
2952 /// let zdt = date(2011, 12, 28).in_tz("Pacific/Apia")?;
2953 /// let mut it = zdt.series(1.day());
2954 /// assert_eq!(it.next(), Some(date(2011, 12, 28).in_tz("Pacific/Apia")?));
2955 /// assert_eq!(it.next(), Some(date(2011, 12, 29).in_tz("Pacific/Apia")?));
2956 /// assert_eq!(it.next(), Some(date(2011, 12, 30).in_tz("Pacific/Apia")?));
2957 /// assert_eq!(it.next(), Some(date(2011, 12, 31).in_tz("Pacific/Apia")?));
2958 /// assert_eq!(it.next(), Some(date(2012, 01, 01).in_tz("Pacific/Apia")?));
2959 ///
2960 /// # Ok::<(), Box<dyn std::error::Error>>(())
2961 /// ```
2962 #[inline]
2963 pub fn series(self, period: Span) -> ZonedSeries {
2964 ZonedSeries { start: self, period, step: 0 }
2965 }
2966 */
2967
2968 #[inline]
2969 fn into_parts(self) -> (Timestamp, DateTime, Offset, TimeZone) {
2970 let inner = self.inner;
2971 let ZonedInner { timestamp, datetime, offset, time_zone } = inner;
2972 (timestamp, datetime, offset, time_zone)
2973 }
2974}
2975
2976/// Parsing and formatting using a "printf"-style API.
2977impl Zoned {
2978 /// Parses a zoned datetime in `input` matching the given `format`.
2979 ///
2980 /// The format string uses a "printf"-style API where conversion
2981 /// specifiers can be used as place holders to match components of
2982 /// a datetime. For details on the specifiers supported, see the
2983 /// [`fmt::strtime`] module documentation.
2984 ///
2985 /// # Warning
2986 ///
2987 /// The `strtime` module APIs do not require an IANA time zone identifier
2988 /// to parse a `Zoned`. If one is not used, then if you format a zoned
2989 /// datetime in a time zone like `America/New_York` and then parse it back
2990 /// again, the zoned datetime you get back will be a "fixed offset" zoned
2991 /// datetime. This in turn means it will not perform daylight saving time
2992 /// safe arithmetic.
2993 ///
2994 /// However, the `%Q` directive may be used to both format and parse an
2995 /// IANA time zone identifier. It is strongly recommended to use this
2996 /// directive whenever one is formatting or parsing `Zoned` values.
2997 ///
2998 /// # Errors
2999 ///
3000 /// This returns an error when parsing failed. This might happen because
3001 /// the format string itself was invalid, or because the input didn't match
3002 /// the format string.
3003 ///
3004 /// This also returns an error if there wasn't sufficient information to
3005 /// construct a zoned datetime. For example, if an offset wasn't parsed.
3006 ///
3007 /// # Example
3008 ///
3009 /// This example shows how to parse a zoned datetime:
3010 ///
3011 /// ```
3012 /// use jiff::Zoned;
3013 ///
3014 /// let zdt = Zoned::strptime("%F %H:%M %:Q", "2024-07-14 21:14 US/Eastern")?;
3015 /// assert_eq!(zdt.to_string(), "2024-07-14T21:14:00-04:00[US/Eastern]");
3016 ///
3017 /// # Ok::<(), Box<dyn std::error::Error>>(())
3018 /// ```
3019 #[inline]
3020 pub fn strptime(
3021 format: impl AsRef<[u8]>,
3022 input: impl AsRef<[u8]>,
3023 ) -> Result<Zoned, Error> {
3024 fmt::strtime::parse(format, input).and_then(|tm| tm.to_zoned())
3025 }
3026
3027 /// Formats this zoned datetime according to the given `format`.
3028 ///
3029 /// The format string uses a "printf"-style API where conversion
3030 /// specifiers can be used as place holders to format components of
3031 /// a datetime. For details on the specifiers supported, see the
3032 /// [`fmt::strtime`] module documentation.
3033 ///
3034 /// # Warning
3035 ///
3036 /// The `strtime` module APIs do not support parsing or formatting with
3037 /// IANA time zone identifiers. This means that if you format a zoned
3038 /// datetime in a time zone like `America/New_York` and then parse it back
3039 /// again, the zoned datetime you get back will be a "fixed offset" zoned
3040 /// datetime. This in turn means it will not perform daylight saving time
3041 /// safe arithmetic.
3042 ///
3043 /// The `strtime` modules APIs are useful for ad hoc formatting and
3044 /// parsing, but they shouldn't be used as an interchange format. For
3045 /// an interchange format, the default `std::fmt::Display` and
3046 /// `std::str::FromStr` trait implementations on `Zoned` are appropriate.
3047 ///
3048 /// # Errors and panics
3049 ///
3050 /// While this routine itself does not error or panic, using the value
3051 /// returned may result in a panic if formatting fails. See the
3052 /// documentation on [`fmt::strtime::Display`] for more information.
3053 ///
3054 /// To format in a way that surfaces errors without panicking, use either
3055 /// [`fmt::strtime::format`] or [`fmt::strtime::BrokenDownTime::format`].
3056 ///
3057 /// # Example
3058 ///
3059 /// While the output of the Unix `date` command is likely locale specific,
3060 /// this is what it looks like on my system:
3061 ///
3062 /// ```
3063 /// use jiff::civil::date;
3064 ///
3065 /// let zdt = date(2024, 7, 15).at(16, 24, 59, 0).in_tz("America/New_York")?;
3066 /// let string = zdt.strftime("%a %b %e %I:%M:%S %p %Z %Y").to_string();
3067 /// assert_eq!(string, "Mon Jul 15 04:24:59 PM EDT 2024");
3068 ///
3069 /// # Ok::<(), Box<dyn std::error::Error>>(())
3070 /// ```
3071 #[inline]
3072 pub fn strftime<'f, F: 'f + ?Sized + AsRef<[u8]>>(
3073 &self,
3074 format: &'f F,
3075 ) -> fmt::strtime::Display<'f> {
3076 fmt::strtime::Display { fmt: format.as_ref(), tm: self.into() }
3077 }
3078}
3079
3080impl Default for Zoned {
3081 #[inline]
3082 fn default() -> Zoned {
3083 Zoned::new(Timestamp::default(), TimeZone::UTC)
3084 }
3085}
3086
3087/// Converts a `Zoned` datetime into a human readable datetime string.
3088///
3089/// (This `Debug` representation currently emits the same string as the
3090/// `Display` representation, but this is not a guarantee.)
3091///
3092/// Options currently supported:
3093///
3094/// * [`std::fmt::Formatter::precision`] can be set to control the precision
3095/// of the fractional second component.
3096///
3097/// # Example
3098///
3099/// ```
3100/// use jiff::civil::date;
3101///
3102/// let zdt = date(2024, 6, 15).at(7, 0, 0, 123_000_000).in_tz("US/Eastern")?;
3103/// assert_eq!(
3104/// format!("{zdt:.6?}"),
3105/// "2024-06-15T07:00:00.123000-04:00[US/Eastern]",
3106/// );
3107/// // Precision values greater than 9 are clamped to 9.
3108/// assert_eq!(
3109/// format!("{zdt:.300?}"),
3110/// "2024-06-15T07:00:00.123000000-04:00[US/Eastern]",
3111/// );
3112/// // A precision of 0 implies the entire fractional
3113/// // component is always truncated.
3114/// assert_eq!(
3115/// format!("{zdt:.0?}"),
3116/// "2024-06-15T07:00:00-04:00[US/Eastern]",
3117/// );
3118///
3119/// # Ok::<(), Box<dyn std::error::Error>>(())
3120/// ```
3121impl core::fmt::Debug for Zoned {
3122 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
3123 core::fmt::Display::fmt(self, f)
3124 }
3125}
3126
3127/// Converts a `Zoned` datetime into a RFC 9557 compliant string.
3128///
3129/// Options currently supported:
3130///
3131/// * [`std::fmt::Formatter::precision`] can be set to control the precision
3132/// of the fractional second component.
3133///
3134/// # Example
3135///
3136/// ```
3137/// use jiff::civil::date;
3138///
3139/// let zdt = date(2024, 6, 15).at(7, 0, 0, 123_000_000).in_tz("US/Eastern")?;
3140/// assert_eq!(
3141/// format!("{zdt:.6}"),
3142/// "2024-06-15T07:00:00.123000-04:00[US/Eastern]",
3143/// );
3144/// // Precision values greater than 9 are clamped to 9.
3145/// assert_eq!(
3146/// format!("{zdt:.300}"),
3147/// "2024-06-15T07:00:00.123000000-04:00[US/Eastern]",
3148/// );
3149/// // A precision of 0 implies the entire fractional
3150/// // component is always truncated.
3151/// assert_eq!(
3152/// format!("{zdt:.0}"),
3153/// "2024-06-15T07:00:00-04:00[US/Eastern]",
3154/// );
3155///
3156/// # Ok::<(), Box<dyn std::error::Error>>(())
3157/// ```
3158impl core::fmt::Display for Zoned {
3159 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
3160 use crate::fmt::StdFmtWrite;
3161
3162 let precision =
3163 f.precision().map(|p| u8::try_from(p).unwrap_or(u8::MAX));
3164 temporal::DateTimePrinter::new()
3165 .precision(precision)
3166 .print_zoned(self, StdFmtWrite(f))
3167 .map_err(|_| core::fmt::Error)
3168 }
3169}
3170
3171/// Parses a zoned timestamp from the Temporal datetime format.
3172///
3173/// See the [`fmt::temporal`](crate::fmt::temporal) for more information on
3174/// the precise format.
3175///
3176/// Note that this is only enabled when the `std` feature
3177/// is enabled because it requires access to a global
3178/// [`TimeZoneDatabase`](crate::tz::TimeZoneDatabase).
3179impl core::str::FromStr for Zoned {
3180 type Err = Error;
3181
3182 fn from_str(string: &str) -> Result<Zoned, Error> {
3183 DEFAULT_DATETIME_PARSER.parse_zoned(string)
3184 }
3185}
3186
3187impl Eq for Zoned {}
3188
3189impl PartialEq for Zoned {
3190 #[inline]
3191 fn eq(&self, rhs: &Zoned) -> bool {
3192 self.timestamp().eq(&rhs.timestamp())
3193 }
3194}
3195
3196impl<'a> PartialEq<Zoned> for &'a Zoned {
3197 #[inline]
3198 fn eq(&self, rhs: &Zoned) -> bool {
3199 (**self).eq(rhs)
3200 }
3201}
3202
3203impl Ord for Zoned {
3204 #[inline]
3205 fn cmp(&self, rhs: &Zoned) -> core::cmp::Ordering {
3206 self.timestamp().cmp(&rhs.timestamp())
3207 }
3208}
3209
3210impl PartialOrd for Zoned {
3211 #[inline]
3212 fn partial_cmp(&self, rhs: &Zoned) -> Option<core::cmp::Ordering> {
3213 Some(self.cmp(rhs))
3214 }
3215}
3216
3217impl<'a> PartialOrd<Zoned> for &'a Zoned {
3218 #[inline]
3219 fn partial_cmp(&self, rhs: &Zoned) -> Option<core::cmp::Ordering> {
3220 (**self).partial_cmp(rhs)
3221 }
3222}
3223
3224impl core::hash::Hash for Zoned {
3225 #[inline]
3226 fn hash<H: core::hash::Hasher>(&self, state: &mut H) {
3227 self.timestamp().hash(state);
3228 }
3229}
3230
3231#[cfg(feature = "std")]
3232impl TryFrom<std::time::SystemTime> for Zoned {
3233 type Error = Error;
3234
3235 #[inline]
3236 fn try_from(system_time: std::time::SystemTime) -> Result<Zoned, Error> {
3237 let timestamp = Timestamp::try_from(system_time)?;
3238 Ok(Zoned::new(timestamp, TimeZone::system()))
3239 }
3240}
3241
3242#[cfg(feature = "std")]
3243impl From<Zoned> for std::time::SystemTime {
3244 #[inline]
3245 fn from(time: Zoned) -> std::time::SystemTime {
3246 time.timestamp().into()
3247 }
3248}
3249
3250/// Adds a span of time to a zoned datetime.
3251///
3252/// This uses checked arithmetic and panics on overflow. To handle overflow
3253/// without panics, use [`Zoned::checked_add`].
3254impl<'a> core::ops::Add<Span> for &'a Zoned {
3255 type Output = Zoned;
3256
3257 #[inline]
3258 fn add(self, rhs: Span) -> Zoned {
3259 self.checked_add(rhs)
3260 .expect("adding span to zoned datetime overflowed")
3261 }
3262}
3263
3264/// Adds a span of time to a zoned datetime in place.
3265///
3266/// This uses checked arithmetic and panics on overflow. To handle overflow
3267/// without panics, use [`Zoned::checked_add`].
3268impl core::ops::AddAssign<Span> for Zoned {
3269 #[inline]
3270 fn add_assign(&mut self, rhs: Span) {
3271 *self = &*self + rhs
3272 }
3273}
3274
3275/// Subtracts a span of time from a zoned datetime.
3276///
3277/// This uses checked arithmetic and panics on overflow. To handle overflow
3278/// without panics, use [`Zoned::checked_sub`].
3279impl<'a> core::ops::Sub<Span> for &'a Zoned {
3280 type Output = Zoned;
3281
3282 #[inline]
3283 fn sub(self, rhs: Span) -> Zoned {
3284 self.checked_sub(rhs)
3285 .expect("subtracting span from zoned datetime overflowed")
3286 }
3287}
3288
3289/// Subtracts a span of time from a zoned datetime in place.
3290///
3291/// This uses checked arithmetic and panics on overflow. To handle overflow
3292/// without panics, use [`Zoned::checked_sub`].
3293impl core::ops::SubAssign<Span> for Zoned {
3294 #[inline]
3295 fn sub_assign(&mut self, rhs: Span) {
3296 *self = &*self - rhs
3297 }
3298}
3299
3300/// Computes the span of time between two zoned datetimes.
3301///
3302/// This will return a negative span when the zoned datetime being subtracted
3303/// is greater.
3304///
3305/// Since this uses the default configuration for calculating a span between
3306/// two zoned datetimes (no rounding and largest units is days), this will
3307/// never panic or fail in any way.
3308///
3309/// To configure the largest unit or enable rounding, use [`Zoned::since`].
3310impl<'a> core::ops::Sub for &'a Zoned {
3311 type Output = Span;
3312
3313 #[inline]
3314 fn sub(self, rhs: &'a Zoned) -> Span {
3315 self.since(rhs).expect("since never fails when given Zoned")
3316 }
3317}
3318
3319/// Adds a signed duration of time to a zoned datetime.
3320///
3321/// This uses checked arithmetic and panics on overflow. To handle overflow
3322/// without panics, use [`Zoned::checked_add`].
3323impl<'a> core::ops::Add<SignedDuration> for &'a Zoned {
3324 type Output = Zoned;
3325
3326 #[inline]
3327 fn add(self, rhs: SignedDuration) -> Zoned {
3328 self.checked_add(rhs)
3329 .expect("adding signed duration to zoned datetime overflowed")
3330 }
3331}
3332
3333/// Adds a signed duration of time to a zoned datetime in place.
3334///
3335/// This uses checked arithmetic and panics on overflow. To handle overflow
3336/// without panics, use [`Zoned::checked_add`].
3337impl core::ops::AddAssign<SignedDuration> for Zoned {
3338 #[inline]
3339 fn add_assign(&mut self, rhs: SignedDuration) {
3340 *self = &*self + rhs
3341 }
3342}
3343
3344/// Subtracts a signed duration of time from a zoned datetime.
3345///
3346/// This uses checked arithmetic and panics on overflow. To handle overflow
3347/// without panics, use [`Zoned::checked_sub`].
3348impl<'a> core::ops::Sub<SignedDuration> for &'a Zoned {
3349 type Output = Zoned;
3350
3351 #[inline]
3352 fn sub(self, rhs: SignedDuration) -> Zoned {
3353 self.checked_sub(rhs).expect(
3354 "subtracting signed duration from zoned datetime overflowed",
3355 )
3356 }
3357}
3358
3359/// Subtracts a signed duration of time from a zoned datetime in place.
3360///
3361/// This uses checked arithmetic and panics on overflow. To handle overflow
3362/// without panics, use [`Zoned::checked_sub`].
3363impl core::ops::SubAssign<SignedDuration> for Zoned {
3364 #[inline]
3365 fn sub_assign(&mut self, rhs: SignedDuration) {
3366 *self = &*self - rhs
3367 }
3368}
3369
3370/// Adds an unsigned duration of time to a zoned datetime.
3371///
3372/// This uses checked arithmetic and panics on overflow. To handle overflow
3373/// without panics, use [`Zoned::checked_add`].
3374impl<'a> core::ops::Add<UnsignedDuration> for &'a Zoned {
3375 type Output = Zoned;
3376
3377 #[inline]
3378 fn add(self, rhs: UnsignedDuration) -> Zoned {
3379 self.checked_add(rhs)
3380 .expect("adding unsigned duration to zoned datetime overflowed")
3381 }
3382}
3383
3384/// Adds an unsigned duration of time to a zoned datetime in place.
3385///
3386/// This uses checked arithmetic and panics on overflow. To handle overflow
3387/// without panics, use [`Zoned::checked_add`].
3388impl core::ops::AddAssign<UnsignedDuration> for Zoned {
3389 #[inline]
3390 fn add_assign(&mut self, rhs: UnsignedDuration) {
3391 *self = &*self + rhs
3392 }
3393}
3394
3395/// Subtracts an unsigned duration of time from a zoned datetime.
3396///
3397/// This uses checked arithmetic and panics on overflow. To handle overflow
3398/// without panics, use [`Zoned::checked_sub`].
3399impl<'a> core::ops::Sub<UnsignedDuration> for &'a Zoned {
3400 type Output = Zoned;
3401
3402 #[inline]
3403 fn sub(self, rhs: UnsignedDuration) -> Zoned {
3404 self.checked_sub(rhs).expect(
3405 "subtracting unsigned duration from zoned datetime overflowed",
3406 )
3407 }
3408}
3409
3410/// Subtracts an unsigned duration of time from a zoned datetime in place.
3411///
3412/// This uses checked arithmetic and panics on overflow. To handle overflow
3413/// without panics, use [`Zoned::checked_sub`].
3414impl core::ops::SubAssign<UnsignedDuration> for Zoned {
3415 #[inline]
3416 fn sub_assign(&mut self, rhs: UnsignedDuration) {
3417 *self = &*self - rhs
3418 }
3419}
3420
3421#[cfg(feature = "serde")]
3422impl serde::Serialize for Zoned {
3423 #[inline]
3424 fn serialize<S: serde::Serializer>(
3425 &self,
3426 serializer: S,
3427 ) -> Result<S::Ok, S::Error> {
3428 serializer.collect_str(self)
3429 }
3430}
3431
3432#[cfg(feature = "serde")]
3433impl<'de> serde::Deserialize<'de> for Zoned {
3434 #[inline]
3435 fn deserialize<D: serde::Deserializer<'de>>(
3436 deserializer: D,
3437 ) -> Result<Zoned, D::Error> {
3438 use serde::de;
3439
3440 struct ZonedVisitor;
3441
3442 impl<'de> de::Visitor<'de> for ZonedVisitor {
3443 type Value = Zoned;
3444
3445 fn expecting(
3446 &self,
3447 f: &mut core::fmt::Formatter,
3448 ) -> core::fmt::Result {
3449 f.write_str("a zoned datetime string")
3450 }
3451
3452 #[inline]
3453 fn visit_bytes<E: de::Error>(
3454 self,
3455 value: &[u8],
3456 ) -> Result<Zoned, E> {
3457 DEFAULT_DATETIME_PARSER
3458 .parse_zoned(value)
3459 .map_err(de::Error::custom)
3460 }
3461
3462 #[inline]
3463 fn visit_str<E: de::Error>(self, value: &str) -> Result<Zoned, E> {
3464 self.visit_bytes(value.as_bytes())
3465 }
3466 }
3467
3468 deserializer.deserialize_str(ZonedVisitor)
3469 }
3470}
3471
3472#[cfg(test)]
3473impl quickcheck::Arbitrary for Zoned {
3474 fn arbitrary(g: &mut quickcheck::Gen) -> Zoned {
3475 let timestamp = Timestamp::arbitrary(g);
3476 let tz = TimeZone::UTC; // TODO: do something better here?
3477 Zoned::new(timestamp, tz)
3478 }
3479
3480 fn shrink(&self) -> alloc::boxed::Box<dyn Iterator<Item = Self>> {
3481 let timestamp = self.timestamp();
3482 alloc::boxed::Box::new(
3483 timestamp
3484 .shrink()
3485 .map(|timestamp| Zoned::new(timestamp, TimeZone::UTC)),
3486 )
3487 }
3488}
3489
3490/*
3491/// An iterator over periodic zoned datetimes, created by [`Zoned::series`].
3492///
3493/// It is exhausted when the next value would exceed a [`Span`] or [`Zoned`]
3494/// value.
3495#[derive(Clone, Debug)]
3496pub struct ZonedSeries {
3497 start: Zoned,
3498 period: Span,
3499 step: i64,
3500}
3501
3502impl Iterator for ZonedSeries {
3503 type Item = Zoned;
3504
3505 #[inline]
3506 fn next(&mut self) -> Option<Zoned> {
3507 // let this = self.start.clone();
3508 // self.start = self.start.checked_add(self.period).ok()?;
3509 // Some(this)
3510 // This is how civil::DateTime series works. But this has a problem
3511 // for Zoned when there are time zone transitions that skip an entire
3512 // day. For example, Pacific/Api doesn't have a December 30, 2011.
3513 // For that case, the code above works better. But if you do it that
3514 // way, then you get the `jan31 + 1 month = feb28` and
3515 // `feb28 + 1 month = march28` problem. Where you would instead
3516 // expect jan31, feb28, mar31... I think.
3517 //
3518 // So I'm not quite sure how to resolve this particular conundrum.
3519 // And this is why ZonedSeries is currently not available.
3520 let span = self.period.checked_mul(self.step).ok()?;
3521 self.step = self.step.checked_add(1)?;
3522 let zdt = self.start.checked_add(span).ok()?;
3523 Some(zdt)
3524 }
3525}
3526*/
3527
3528/// Options for [`Timestamp::checked_add`] and [`Timestamp::checked_sub`].
3529///
3530/// This type provides a way to ergonomically add one of a few different
3531/// duration types to a [`Timestamp`].
3532///
3533/// The main way to construct values of this type is with its `From` trait
3534/// implementations:
3535///
3536/// * `From<Span> for ZonedArithmetic` adds (or subtracts) the given span
3537/// to the receiver timestamp.
3538/// * `From<SignedDuration> for ZonedArithmetic` adds (or subtracts)
3539/// the given signed duration to the receiver timestamp.
3540/// * `From<std::time::Duration> for ZonedArithmetic` adds (or subtracts)
3541/// the given unsigned duration to the receiver timestamp.
3542///
3543/// # Example
3544///
3545/// ```
3546/// use std::time::Duration;
3547///
3548/// use jiff::{SignedDuration, Timestamp, ToSpan};
3549///
3550/// let ts: Timestamp = "2024-02-28T00:00:00Z".parse()?;
3551/// assert_eq!(
3552/// ts.checked_add(48.hours())?,
3553/// "2024-03-01T00:00:00Z".parse()?,
3554/// );
3555/// assert_eq!(
3556/// ts.checked_add(SignedDuration::from_hours(48))?,
3557/// "2024-03-01T00:00:00Z".parse()?,
3558/// );
3559/// assert_eq!(
3560/// ts.checked_add(Duration::from_secs(48 * 60 * 60))?,
3561/// "2024-03-01T00:00:00Z".parse()?,
3562/// );
3563///
3564/// # Ok::<(), Box<dyn std::error::Error>>(())
3565/// ```
3566#[derive(Clone, Copy, Debug)]
3567pub struct ZonedArithmetic {
3568 duration: Duration,
3569}
3570
3571impl ZonedArithmetic {
3572 #[inline]
3573 fn checked_add(self, zdt: &Zoned) -> Result<Zoned, Error> {
3574 match self.duration.to_signed()? {
3575 SDuration::Span(span) => zdt.checked_add_span(span),
3576 SDuration::Absolute(sdur) => zdt.checked_add_duration(sdur),
3577 }
3578 }
3579
3580 #[inline]
3581 fn checked_neg(self) -> Result<ZonedArithmetic, Error> {
3582 let duration = self.duration.checked_neg()?;
3583 Ok(ZonedArithmetic { duration })
3584 }
3585
3586 #[inline]
3587 fn is_negative(&self) -> bool {
3588 self.duration.is_negative()
3589 }
3590}
3591
3592impl From<Span> for ZonedArithmetic {
3593 fn from(span: Span) -> ZonedArithmetic {
3594 let duration = Duration::from(span);
3595 ZonedArithmetic { duration }
3596 }
3597}
3598
3599impl From<SignedDuration> for ZonedArithmetic {
3600 fn from(sdur: SignedDuration) -> ZonedArithmetic {
3601 let duration = Duration::from(sdur);
3602 ZonedArithmetic { duration }
3603 }
3604}
3605
3606impl From<UnsignedDuration> for ZonedArithmetic {
3607 fn from(udur: UnsignedDuration) -> ZonedArithmetic {
3608 let duration = Duration::from(udur);
3609 ZonedArithmetic { duration }
3610 }
3611}
3612
3613impl<'a> From<&'a Span> for ZonedArithmetic {
3614 fn from(span: &'a Span) -> ZonedArithmetic {
3615 ZonedArithmetic::from(*span)
3616 }
3617}
3618
3619impl<'a> From<&'a SignedDuration> for ZonedArithmetic {
3620 fn from(sdur: &'a SignedDuration) -> ZonedArithmetic {
3621 ZonedArithmetic::from(*sdur)
3622 }
3623}
3624
3625impl<'a> From<&'a UnsignedDuration> for ZonedArithmetic {
3626 fn from(udur: &'a UnsignedDuration) -> ZonedArithmetic {
3627 ZonedArithmetic::from(*udur)
3628 }
3629}
3630
3631/// Options for [`Zoned::since`] and [`Zoned::until`].
3632///
3633/// This type provides a way to configure the calculation of spans between two
3634/// [`Zoned`] values. In particular, both `Zoned::since` and `Zoned::until`
3635/// accept anything that implements `Into<ZonedDifference>`. There are a few
3636/// key trait implementations that make this convenient:
3637///
3638/// * `From<&Zoned> for ZonedDifference` will construct a configuration
3639/// consisting of just the zoned datetime. So for example, `zdt1.since(zdt2)`
3640/// returns the span from `zdt2` to `zdt1`.
3641/// * `From<(Unit, &Zoned)>` is a convenient way to specify the largest units
3642/// that should be present on the span returned. By default, the largest units
3643/// are days. Using this trait implementation is equivalent to
3644/// `ZonedDifference::new(&zdt).largest(unit)`.
3645///
3646/// One can also provide a `ZonedDifference` value directly. Doing so
3647/// is necessary to use the rounding features of calculating a span. For
3648/// example, setting the smallest unit (defaults to [`Unit::Nanosecond`]), the
3649/// rounding mode (defaults to [`RoundMode::Trunc`]) and the rounding increment
3650/// (defaults to `1`). The defaults are selected such that no rounding occurs.
3651///
3652/// Rounding a span as part of calculating it is provided as a convenience.
3653/// Callers may choose to round the span as a distinct step via
3654/// [`Span::round`], but callers may need to provide a reference date
3655/// for rounding larger units. By coupling rounding with routines like
3656/// [`Zoned::since`], the reference date can be set automatically based on
3657/// the input to `Zoned::since`.
3658///
3659/// # Example
3660///
3661/// This example shows how to round a span between two zoned datetimes to the
3662/// nearest half-hour, with ties breaking away from zero.
3663///
3664/// ```
3665/// use jiff::{RoundMode, ToSpan, Unit, Zoned, ZonedDifference};
3666///
3667/// let zdt1 = "2024-03-15 08:14:00.123456789[America/New_York]".parse::<Zoned>()?;
3668/// let zdt2 = "2030-03-22 15:00[America/New_York]".parse::<Zoned>()?;
3669/// let span = zdt1.until(
3670/// ZonedDifference::new(&zdt2)
3671/// .smallest(Unit::Minute)
3672/// .largest(Unit::Year)
3673/// .mode(RoundMode::HalfExpand)
3674/// .increment(30),
3675/// )?;
3676/// assert_eq!(span, 6.years().days(7).hours(7).fieldwise());
3677///
3678/// # Ok::<(), Box<dyn std::error::Error>>(())
3679/// ```
3680#[derive(Clone, Copy, Debug)]
3681pub struct ZonedDifference<'a> {
3682 zoned: &'a Zoned,
3683 round: SpanRound<'static>,
3684}
3685
3686impl<'a> ZonedDifference<'a> {
3687 /// Create a new default configuration for computing the span between the
3688 /// given zoned datetime and some other zoned datetime (specified as the
3689 /// receiver in [`Zoned::since`] or [`Zoned::until`]).
3690 #[inline]
3691 pub fn new(zoned: &'a Zoned) -> ZonedDifference<'a> {
3692 // We use truncation rounding by default since it seems that's
3693 // what is generally expected when computing the difference between
3694 // datetimes.
3695 //
3696 // See: https://github.com/tc39/proposal-temporal/issues/1122
3697 let round = SpanRound::new().mode(RoundMode::Trunc);
3698 ZonedDifference { zoned, round }
3699 }
3700
3701 /// Set the smallest units allowed in the span returned.
3702 ///
3703 /// When a largest unit is not specified and the smallest unit is hours
3704 /// or greater, then the largest unit is automatically set to be equal to
3705 /// the smallest unit.
3706 ///
3707 /// # Errors
3708 ///
3709 /// The smallest units must be no greater than the largest units. If this
3710 /// is violated, then computing a span with this configuration will result
3711 /// in an error.
3712 ///
3713 /// # Example
3714 ///
3715 /// This shows how to round a span between two zoned datetimes to the
3716 /// nearest number of weeks.
3717 ///
3718 /// ```
3719 /// use jiff::{RoundMode, ToSpan, Unit, Zoned, ZonedDifference};
3720 ///
3721 /// let zdt1 = "2024-03-15 08:14[America/New_York]".parse::<Zoned>()?;
3722 /// let zdt2 = "2030-11-22 08:30[America/New_York]".parse::<Zoned>()?;
3723 /// let span = zdt1.until(
3724 /// ZonedDifference::new(&zdt2)
3725 /// .smallest(Unit::Week)
3726 /// .largest(Unit::Week)
3727 /// .mode(RoundMode::HalfExpand),
3728 /// )?;
3729 /// assert_eq!(format!("{span:#}"), "349w");
3730 ///
3731 /// # Ok::<(), Box<dyn std::error::Error>>(())
3732 /// ```
3733 #[inline]
3734 pub fn smallest(self, unit: Unit) -> ZonedDifference<'a> {
3735 ZonedDifference { round: self.round.smallest(unit), ..self }
3736 }
3737
3738 /// Set the largest units allowed in the span returned.
3739 ///
3740 /// When a largest unit is not specified and the smallest unit is hours
3741 /// or greater, then the largest unit is automatically set to be equal to
3742 /// the smallest unit. Otherwise, when the largest unit is not specified,
3743 /// it is set to hours.
3744 ///
3745 /// Once a largest unit is set, there is no way to change this rounding
3746 /// configuration back to using the "automatic" default. Instead, callers
3747 /// must create a new configuration.
3748 ///
3749 /// # Errors
3750 ///
3751 /// The largest units, when set, must be at least as big as the smallest
3752 /// units (which defaults to [`Unit::Nanosecond`]). If this is violated,
3753 /// then computing a span with this configuration will result in an error.
3754 ///
3755 /// # Example
3756 ///
3757 /// This shows how to round a span between two zoned datetimes to units no
3758 /// bigger than seconds.
3759 ///
3760 /// ```
3761 /// use jiff::{ToSpan, Unit, Zoned, ZonedDifference};
3762 ///
3763 /// let zdt1 = "2024-03-15 08:14[America/New_York]".parse::<Zoned>()?;
3764 /// let zdt2 = "2030-11-22 08:30[America/New_York]".parse::<Zoned>()?;
3765 /// let span = zdt1.until(
3766 /// ZonedDifference::new(&zdt2).largest(Unit::Second),
3767 /// )?;
3768 /// assert_eq!(span.to_string(), "PT211079760S");
3769 ///
3770 /// # Ok::<(), Box<dyn std::error::Error>>(())
3771 /// ```
3772 #[inline]
3773 pub fn largest(self, unit: Unit) -> ZonedDifference<'a> {
3774 ZonedDifference { round: self.round.largest(unit), ..self }
3775 }
3776
3777 /// Set the rounding mode.
3778 ///
3779 /// This defaults to [`RoundMode::Trunc`] since it's plausible that
3780 /// rounding "up" in the context of computing the span between
3781 /// two zoned datetimes could be surprising in a number of cases. The
3782 /// [`RoundMode::HalfExpand`] mode corresponds to typical rounding you
3783 /// might have learned about in school. But a variety of other rounding
3784 /// modes exist.
3785 ///
3786 /// # Example
3787 ///
3788 /// This shows how to always round "up" towards positive infinity.
3789 ///
3790 /// ```
3791 /// use jiff::{RoundMode, ToSpan, Unit, Zoned, ZonedDifference};
3792 ///
3793 /// let zdt1 = "2024-03-15 08:10[America/New_York]".parse::<Zoned>()?;
3794 /// let zdt2 = "2024-03-15 08:11[America/New_York]".parse::<Zoned>()?;
3795 /// let span = zdt1.until(
3796 /// ZonedDifference::new(&zdt2)
3797 /// .smallest(Unit::Hour)
3798 /// .mode(RoundMode::Ceil),
3799 /// )?;
3800 /// // Only one minute elapsed, but we asked to always round up!
3801 /// assert_eq!(span, 1.hour().fieldwise());
3802 ///
3803 /// // Since `Ceil` always rounds toward positive infinity, the behavior
3804 /// // flips for a negative span.
3805 /// let span = zdt1.since(
3806 /// ZonedDifference::new(&zdt2)
3807 /// .smallest(Unit::Hour)
3808 /// .mode(RoundMode::Ceil),
3809 /// )?;
3810 /// assert_eq!(span, 0.hour().fieldwise());
3811 ///
3812 /// # Ok::<(), Box<dyn std::error::Error>>(())
3813 /// ```
3814 #[inline]
3815 pub fn mode(self, mode: RoundMode) -> ZonedDifference<'a> {
3816 ZonedDifference { round: self.round.mode(mode), ..self }
3817 }
3818
3819 /// Set the rounding increment for the smallest unit.
3820 ///
3821 /// The default value is `1`. Other values permit rounding the smallest
3822 /// unit to the nearest integer increment specified. For example, if the
3823 /// smallest unit is set to [`Unit::Minute`], then a rounding increment of
3824 /// `30` would result in rounding in increments of a half hour. That is,
3825 /// the only minute value that could result would be `0` or `30`.
3826 ///
3827 /// # Errors
3828 ///
3829 /// When the smallest unit is less than days, the rounding increment must
3830 /// divide evenly into the next highest unit after the smallest unit
3831 /// configured (and must not be equivalent to it). For example, if the
3832 /// smallest unit is [`Unit::Nanosecond`], then *some* of the valid values
3833 /// for the rounding increment are `1`, `2`, `4`, `5`, `100` and `500`.
3834 /// Namely, any integer that divides evenly into `1,000` nanoseconds since
3835 /// there are `1,000` nanoseconds in the next highest unit (microseconds).
3836 ///
3837 /// The error will occur when computing the span, and not when setting
3838 /// the increment here.
3839 ///
3840 /// # Example
3841 ///
3842 /// This shows how to round the span between two zoned datetimes to the
3843 /// nearest 5 minute increment.
3844 ///
3845 /// ```
3846 /// use jiff::{RoundMode, ToSpan, Unit, Zoned, ZonedDifference};
3847 ///
3848 /// let zdt1 = "2024-03-15 08:19[America/New_York]".parse::<Zoned>()?;
3849 /// let zdt2 = "2024-03-15 12:52[America/New_York]".parse::<Zoned>()?;
3850 /// let span = zdt1.until(
3851 /// ZonedDifference::new(&zdt2)
3852 /// .smallest(Unit::Minute)
3853 /// .increment(5)
3854 /// .mode(RoundMode::HalfExpand),
3855 /// )?;
3856 /// assert_eq!(format!("{span:#}"), "4h 35m");
3857 ///
3858 /// # Ok::<(), Box<dyn std::error::Error>>(())
3859 /// ```
3860 #[inline]
3861 pub fn increment(self, increment: i64) -> ZonedDifference<'a> {
3862 ZonedDifference { round: self.round.increment(increment), ..self }
3863 }
3864
3865 /// Returns true if and only if this configuration could change the span
3866 /// via rounding.
3867 #[inline]
3868 fn rounding_may_change_span(&self) -> bool {
3869 self.round.rounding_may_change_span_ignore_largest()
3870 }
3871
3872 /// Returns the span of time from `dt1` to the datetime in this
3873 /// configuration. The biggest units allowed are determined by the
3874 /// `smallest` and `largest` settings, but defaults to `Unit::Day`.
3875 #[inline]
3876 fn until_with_largest_unit(&self, zdt1: &Zoned) -> Result<Span, Error> {
3877 let zdt2 = self.zoned;
3878
3879 let sign = t::sign(zdt2, zdt1);
3880 if sign == 0 {
3881 return Ok(Span::new());
3882 }
3883
3884 let largest = self
3885 .round
3886 .get_largest()
3887 .unwrap_or_else(|| self.round.get_smallest().max(Unit::Hour));
3888 if largest < Unit::Day {
3889 return zdt1.timestamp().until((largest, zdt2.timestamp()));
3890 }
3891 if zdt1.time_zone() != zdt2.time_zone() {
3892 return Err(err!(
3893 "computing the span between zoned datetimes, with \
3894 {largest} units, requires that the time zones are \
3895 equivalent, but {zdt1} and {zdt2} have distinct \
3896 time zones",
3897 largest = largest.singular(),
3898 ));
3899 }
3900 let tz = zdt1.time_zone();
3901
3902 let (dt1, mut dt2) = (zdt1.datetime(), zdt2.datetime());
3903
3904 let mut day_correct: t::SpanDays = C(0).rinto();
3905 if -sign == dt1.time().until_nanoseconds(dt2.time()).signum() {
3906 day_correct += C(1);
3907 }
3908
3909 let mut mid = dt2
3910 .date()
3911 .checked_add(Span::new().days_ranged(day_correct * -sign))
3912 .with_context(|| {
3913 err!(
3914 "failed to add {days} days to date in {dt2}",
3915 days = day_correct * -sign,
3916 )
3917 })?
3918 .to_datetime(dt1.time());
3919 let mut zmid: Zoned = mid.to_zoned(tz.clone()).with_context(|| {
3920 err!(
3921 "failed to convert intermediate datetime {mid} \
3922 to zoned timestamp in time zone {tz}",
3923 tz = tz.diagnostic_name(),
3924 )
3925 })?;
3926 if t::sign(zdt2, &zmid) == -sign {
3927 if sign == -1 {
3928 panic!("this should be an error");
3929 }
3930 day_correct += C(1);
3931 mid = dt2
3932 .date()
3933 .checked_add(Span::new().days_ranged(day_correct * -sign))
3934 .with_context(|| {
3935 err!(
3936 "failed to add {days} days to date in {dt2}",
3937 days = day_correct * -sign,
3938 )
3939 })?
3940 .to_datetime(dt1.time());
3941 zmid = mid.to_zoned(tz.clone()).with_context(|| {
3942 err!(
3943 "failed to convert intermediate datetime {mid} \
3944 to zoned timestamp in time zone {tz}",
3945 tz = tz.diagnostic_name(),
3946 )
3947 })?;
3948 if t::sign(zdt2, &zmid) == -sign {
3949 panic!("this should be an error too");
3950 }
3951 }
3952 let remainder_nano = zdt2.timestamp().as_nanosecond_ranged()
3953 - zmid.timestamp().as_nanosecond_ranged();
3954 dt2 = mid;
3955
3956 let date_span = dt1.date().until((largest, dt2.date()))?;
3957 Ok(Span::from_invariant_nanoseconds(Unit::Hour, remainder_nano)
3958 .expect("difference between time always fits in span")
3959 .years_ranged(date_span.get_years_ranged())
3960 .months_ranged(date_span.get_months_ranged())
3961 .weeks_ranged(date_span.get_weeks_ranged())
3962 .days_ranged(date_span.get_days_ranged()))
3963 }
3964}
3965
3966impl<'a> From<&'a Zoned> for ZonedDifference<'a> {
3967 #[inline]
3968 fn from(zdt: &'a Zoned) -> ZonedDifference<'a> {
3969 ZonedDifference::new(zdt)
3970 }
3971}
3972
3973impl<'a> From<(Unit, &'a Zoned)> for ZonedDifference<'a> {
3974 #[inline]
3975 fn from((largest, zdt): (Unit, &'a Zoned)) -> ZonedDifference<'a> {
3976 ZonedDifference::new(zdt).largest(largest)
3977 }
3978}
3979
3980/// Options for [`Zoned::round`].
3981///
3982/// This type provides a way to configure the rounding of a zoned datetime. In
3983/// particular, `Zoned::round` accepts anything that implements the
3984/// `Into<ZonedRound>` trait. There are some trait implementations that
3985/// therefore make calling `Zoned::round` in some common cases more
3986/// ergonomic:
3987///
3988/// * `From<Unit> for ZonedRound` will construct a rounding
3989/// configuration that rounds to the unit given. Specifically,
3990/// `ZonedRound::new().smallest(unit)`.
3991/// * `From<(Unit, i64)> for ZonedRound` is like the one above, but also
3992/// specifies the rounding increment for [`ZonedRound::increment`].
3993///
3994/// Note that in the default configuration, no rounding occurs.
3995///
3996/// # Example
3997///
3998/// This example shows how to round a zoned datetime to the nearest second:
3999///
4000/// ```
4001/// use jiff::{civil::date, Unit, Zoned};
4002///
4003/// let zdt: Zoned = "2024-06-20 16:24:59.5[America/New_York]".parse()?;
4004/// assert_eq!(
4005/// zdt.round(Unit::Second)?,
4006/// // The second rounds up and causes minutes to increase.
4007/// date(2024, 6, 20).at(16, 25, 0, 0).in_tz("America/New_York")?,
4008/// );
4009///
4010/// # Ok::<(), Box<dyn std::error::Error>>(())
4011/// ```
4012///
4013/// The above makes use of the fact that `Unit` implements
4014/// `Into<ZonedRound>`. If you want to change the rounding mode to, say,
4015/// truncation, then you'll need to construct a `ZonedRound` explicitly
4016/// since there are no convenience `Into` trait implementations for
4017/// [`RoundMode`].
4018///
4019/// ```
4020/// use jiff::{civil::date, RoundMode, Unit, Zoned, ZonedRound};
4021///
4022/// let zdt: Zoned = "2024-06-20 16:24:59.5[America/New_York]".parse()?;
4023/// assert_eq!(
4024/// zdt.round(
4025/// ZonedRound::new().smallest(Unit::Second).mode(RoundMode::Trunc),
4026/// )?,
4027/// // The second just gets truncated as if it wasn't there.
4028/// date(2024, 6, 20).at(16, 24, 59, 0).in_tz("America/New_York")?,
4029/// );
4030///
4031/// # Ok::<(), Box<dyn std::error::Error>>(())
4032/// ```
4033#[derive(Clone, Copy, Debug)]
4034pub struct ZonedRound {
4035 round: DateTimeRound,
4036}
4037
4038impl ZonedRound {
4039 /// Create a new default configuration for rounding a [`Zoned`].
4040 #[inline]
4041 pub fn new() -> ZonedRound {
4042 ZonedRound { round: DateTimeRound::new() }
4043 }
4044
4045 /// Set the smallest units allowed in the zoned datetime returned after
4046 /// rounding.
4047 ///
4048 /// Any units below the smallest configured unit will be used, along
4049 /// with the rounding increment and rounding mode, to determine
4050 /// the value of the smallest unit. For example, when rounding
4051 /// `2024-06-20T03:25:30[America/New_York]` to the nearest minute, the `30`
4052 /// second unit will result in rounding the minute unit of `25` up to `26`
4053 /// and zeroing out everything below minutes.
4054 ///
4055 /// This defaults to [`Unit::Nanosecond`].
4056 ///
4057 /// # Errors
4058 ///
4059 /// The smallest units must be no greater than [`Unit::Day`]. And when the
4060 /// smallest unit is `Unit::Day`, the rounding increment must be equal to
4061 /// `1`. Otherwise an error will be returned from [`Zoned::round`].
4062 ///
4063 /// # Example
4064 ///
4065 /// ```
4066 /// use jiff::{civil::date, Unit, ZonedRound};
4067 ///
4068 /// let zdt = date(2024, 6, 20).at(3, 25, 30, 0).in_tz("America/New_York")?;
4069 /// assert_eq!(
4070 /// zdt.round(ZonedRound::new().smallest(Unit::Minute))?,
4071 /// date(2024, 6, 20).at(3, 26, 0, 0).in_tz("America/New_York")?,
4072 /// );
4073 /// // Or, utilize the `From<Unit> for ZonedRound` impl:
4074 /// assert_eq!(
4075 /// zdt.round(Unit::Minute)?,
4076 /// date(2024, 6, 20).at(3, 26, 0, 0).in_tz("America/New_York")?,
4077 /// );
4078 ///
4079 /// # Ok::<(), Box<dyn std::error::Error>>(())
4080 /// ```
4081 #[inline]
4082 pub fn smallest(self, unit: Unit) -> ZonedRound {
4083 ZonedRound { round: self.round.smallest(unit) }
4084 }
4085
4086 /// Set the rounding mode.
4087 ///
4088 /// This defaults to [`RoundMode::HalfExpand`], which rounds away from
4089 /// zero. It matches the kind of rounding you might have been taught in
4090 /// school.
4091 ///
4092 /// # Example
4093 ///
4094 /// This shows how to always round zoned datetimes up towards positive
4095 /// infinity.
4096 ///
4097 /// ```
4098 /// use jiff::{civil::date, RoundMode, Unit, Zoned, ZonedRound};
4099 ///
4100 /// let zdt: Zoned = "2024-06-20 03:25:01[America/New_York]".parse()?;
4101 /// assert_eq!(
4102 /// zdt.round(
4103 /// ZonedRound::new()
4104 /// .smallest(Unit::Minute)
4105 /// .mode(RoundMode::Ceil),
4106 /// )?,
4107 /// date(2024, 6, 20).at(3, 26, 0, 0).in_tz("America/New_York")?,
4108 /// );
4109 ///
4110 /// # Ok::<(), Box<dyn std::error::Error>>(())
4111 /// ```
4112 #[inline]
4113 pub fn mode(self, mode: RoundMode) -> ZonedRound {
4114 ZonedRound { round: self.round.mode(mode) }
4115 }
4116
4117 /// Set the rounding increment for the smallest unit.
4118 ///
4119 /// The default value is `1`. Other values permit rounding the smallest
4120 /// unit to the nearest integer increment specified. For example, if the
4121 /// smallest unit is set to [`Unit::Minute`], then a rounding increment of
4122 /// `30` would result in rounding in increments of a half hour. That is,
4123 /// the only minute value that could result would be `0` or `30`.
4124 ///
4125 /// # Errors
4126 ///
4127 /// When the smallest unit is `Unit::Day`, then the rounding increment must
4128 /// be `1` or else [`Zoned::round`] will return an error.
4129 ///
4130 /// For other units, the rounding increment must divide evenly into the
4131 /// next highest unit above the smallest unit set. The rounding increment
4132 /// must also not be equal to the next highest unit. For example, if the
4133 /// smallest unit is [`Unit::Nanosecond`], then *some* of the valid values
4134 /// for the rounding increment are `1`, `2`, `4`, `5`, `100` and `500`.
4135 /// Namely, any integer that divides evenly into `1,000` nanoseconds since
4136 /// there are `1,000` nanoseconds in the next highest unit (microseconds).
4137 ///
4138 /// # Example
4139 ///
4140 /// This example shows how to round a zoned datetime to the nearest 10
4141 /// minute increment.
4142 ///
4143 /// ```
4144 /// use jiff::{civil::date, RoundMode, Unit, Zoned, ZonedRound};
4145 ///
4146 /// let zdt: Zoned = "2024-06-20 03:24:59[America/New_York]".parse()?;
4147 /// assert_eq!(
4148 /// zdt.round((Unit::Minute, 10))?,
4149 /// date(2024, 6, 20).at(3, 20, 0, 0).in_tz("America/New_York")?,
4150 /// );
4151 ///
4152 /// # Ok::<(), Box<dyn std::error::Error>>(())
4153 /// ```
4154 #[inline]
4155 pub fn increment(self, increment: i64) -> ZonedRound {
4156 ZonedRound { round: self.round.increment(increment) }
4157 }
4158
4159 /// Does the actual rounding.
4160 ///
4161 /// Most of the work is farmed out to civil datetime rounding.
4162 pub(crate) fn round(&self, zdt: &Zoned) -> Result<Zoned, Error> {
4163 let start = zdt.datetime();
4164 let day_length = day_length(start, zdt.time_zone().clone())
4165 .with_context(|| err!("failed to find length of day for {zdt}"))?;
4166 let end = self.round.round(day_length, start)?;
4167 // Like in the ZonedWith API, in order to avoid small changes to clock
4168 // time hitting a 1 hour disambiguation shift, we use offset conflict
4169 // resolution to do our best to "prefer" the offset we already have.
4170 let amb = OffsetConflict::PreferOffset.resolve(
4171 end,
4172 zdt.offset(),
4173 zdt.time_zone().clone(),
4174 )?;
4175 amb.compatible()
4176 }
4177}
4178
4179impl Default for ZonedRound {
4180 #[inline]
4181 fn default() -> ZonedRound {
4182 ZonedRound::new()
4183 }
4184}
4185
4186impl From<Unit> for ZonedRound {
4187 #[inline]
4188 fn from(unit: Unit) -> ZonedRound {
4189 ZonedRound::default().smallest(unit)
4190 }
4191}
4192
4193impl From<(Unit, i64)> for ZonedRound {
4194 #[inline]
4195 fn from((unit, increment): (Unit, i64)) -> ZonedRound {
4196 ZonedRound::from(unit).increment(increment)
4197 }
4198}
4199
4200/// A builder for setting the fields on a [`Zoned`].
4201///
4202/// This builder is constructed via [`Zoned::with`].
4203///
4204/// # Example
4205///
4206/// The builder ensures one can chain together the individual components of a
4207/// zoned datetime without it failing at an intermediate step. For example,
4208/// if you had a date of `2024-10-31T00:00:00[America/New_York]` and wanted
4209/// to change both the day and the month, and each setting was validated
4210/// independent of the other, you would need to be careful to set the day first
4211/// and then the month. In some cases, you would need to set the month first
4212/// and then the day!
4213///
4214/// But with the builder, you can set values in any order:
4215///
4216/// ```
4217/// use jiff::civil::date;
4218///
4219/// let zdt1 = date(2024, 10, 31).at(0, 0, 0, 0).in_tz("America/New_York")?;
4220/// let zdt2 = zdt1.with().month(11).day(30).build()?;
4221/// assert_eq!(
4222/// zdt2,
4223/// date(2024, 11, 30).at(0, 0, 0, 0).in_tz("America/New_York")?,
4224/// );
4225///
4226/// let zdt1 = date(2024, 4, 30).at(0, 0, 0, 0).in_tz("America/New_York")?;
4227/// let zdt2 = zdt1.with().day(31).month(7).build()?;
4228/// assert_eq!(
4229/// zdt2,
4230/// date(2024, 7, 31).at(0, 0, 0, 0).in_tz("America/New_York")?,
4231/// );
4232///
4233/// # Ok::<(), Box<dyn std::error::Error>>(())
4234/// ```
4235#[derive(Clone, Debug)]
4236pub struct ZonedWith {
4237 original: Zoned,
4238 datetime_with: DateTimeWith,
4239 offset: Option<Offset>,
4240 disambiguation: Disambiguation,
4241 offset_conflict: OffsetConflict,
4242}
4243
4244impl ZonedWith {
4245 #[inline]
4246 fn new(original: Zoned) -> ZonedWith {
4247 let datetime_with = original.datetime().with();
4248 ZonedWith {
4249 original,
4250 datetime_with,
4251 offset: None,
4252 disambiguation: Disambiguation::default(),
4253 offset_conflict: OffsetConflict::PreferOffset,
4254 }
4255 }
4256
4257 /// Create a new `Zoned` from the fields set on this configuration.
4258 ///
4259 /// An error occurs when the fields combine to an invalid zoned datetime.
4260 ///
4261 /// For any fields not set on this configuration, the values are taken from
4262 /// the [`Zoned`] that originally created this configuration. When no
4263 /// values are set, this routine is guaranteed to succeed and will always
4264 /// return the original zoned datetime without modification.
4265 ///
4266 /// # Example
4267 ///
4268 /// This creates a zoned datetime corresponding to the last day in the year
4269 /// at noon:
4270 ///
4271 /// ```
4272 /// use jiff::civil::date;
4273 ///
4274 /// let zdt = date(2023, 1, 1).at(12, 0, 0, 0).in_tz("America/New_York")?;
4275 /// assert_eq!(
4276 /// zdt.with().day_of_year_no_leap(365).build()?,
4277 /// date(2023, 12, 31).at(12, 0, 0, 0).in_tz("America/New_York")?,
4278 /// );
4279 ///
4280 /// // It also works with leap years for the same input:
4281 /// let zdt = date(2024, 1, 1).at(12, 0, 0, 0).in_tz("America/New_York")?;
4282 /// assert_eq!(
4283 /// zdt.with().day_of_year_no_leap(365).build()?,
4284 /// date(2024, 12, 31).at(12, 0, 0, 0).in_tz("America/New_York")?,
4285 /// );
4286 ///
4287 /// # Ok::<(), Box<dyn std::error::Error>>(())
4288 /// ```
4289 ///
4290 /// # Example: error for invalid zoned datetime
4291 ///
4292 /// If the fields combine to form an invalid datetime, then an error is
4293 /// returned:
4294 ///
4295 /// ```
4296 /// use jiff::civil::date;
4297 ///
4298 /// let zdt = date(2024, 11, 30).at(15, 30, 0, 0).in_tz("America/New_York")?;
4299 /// assert!(zdt.with().day(31).build().is_err());
4300 ///
4301 /// let zdt = date(2024, 2, 29).at(15, 30, 0, 0).in_tz("America/New_York")?;
4302 /// assert!(zdt.with().year(2023).build().is_err());
4303 ///
4304 /// # Ok::<(), Box<dyn std::error::Error>>(())
4305 /// ```
4306 #[inline]
4307 pub fn build(self) -> Result<Zoned, Error> {
4308 let dt = self.datetime_with.build()?;
4309 let (_, _, offset, time_zone) = self.original.into_parts();
4310 let offset = self.offset.unwrap_or(offset);
4311 let ambiguous = self.offset_conflict.resolve(dt, offset, time_zone)?;
4312 ambiguous.disambiguate(self.disambiguation)
4313 }
4314
4315 /// Set the year, month and day fields via the `Date` given.
4316 ///
4317 /// This overrides any previous year, month or day settings.
4318 ///
4319 /// # Example
4320 ///
4321 /// This shows how to create a new zoned datetime with a different date:
4322 ///
4323 /// ```
4324 /// use jiff::civil::date;
4325 ///
4326 /// let zdt1 = date(2005, 11, 5).at(15, 30, 0, 0).in_tz("America/New_York")?;
4327 /// let zdt2 = zdt1.with().date(date(2017, 10, 31)).build()?;
4328 /// // The date changes but the time remains the same.
4329 /// assert_eq!(
4330 /// zdt2,
4331 /// date(2017, 10, 31).at(15, 30, 0, 0).in_tz("America/New_York")?,
4332 /// );
4333 ///
4334 /// # Ok::<(), Box<dyn std::error::Error>>(())
4335 /// ```
4336 #[inline]
4337 pub fn date(self, date: Date) -> ZonedWith {
4338 ZonedWith { datetime_with: self.datetime_with.date(date), ..self }
4339 }
4340
4341 /// Set the hour, minute, second, millisecond, microsecond and nanosecond
4342 /// fields via the `Time` given.
4343 ///
4344 /// This overrides any previous hour, minute, second, millisecond,
4345 /// microsecond, nanosecond or subsecond nanosecond settings.
4346 ///
4347 /// # Example
4348 ///
4349 /// This shows how to create a new zoned datetime with a different time:
4350 ///
4351 /// ```
4352 /// use jiff::civil::{date, time};
4353 ///
4354 /// let zdt1 = date(2005, 11, 5).at(15, 30, 0, 0).in_tz("America/New_York")?;
4355 /// let zdt2 = zdt1.with().time(time(23, 59, 59, 123_456_789)).build()?;
4356 /// // The time changes but the date remains the same.
4357 /// assert_eq!(
4358 /// zdt2,
4359 /// date(2005, 11, 5)
4360 /// .at(23, 59, 59, 123_456_789)
4361 /// .in_tz("America/New_York")?,
4362 /// );
4363 ///
4364 /// # Ok::<(), Box<dyn std::error::Error>>(())
4365 /// ```
4366 #[inline]
4367 pub fn time(self, time: Time) -> ZonedWith {
4368 ZonedWith { datetime_with: self.datetime_with.time(time), ..self }
4369 }
4370
4371 /// Set the year field on a [`Zoned`].
4372 ///
4373 /// One can access this value via [`Zoned::year`].
4374 ///
4375 /// This overrides any previous year settings.
4376 ///
4377 /// # Errors
4378 ///
4379 /// This returns an error when [`ZonedWith::build`] is called if the
4380 /// given year is outside the range `-9999..=9999`. This can also return an
4381 /// error if the resulting date is otherwise invalid.
4382 ///
4383 /// # Example
4384 ///
4385 /// This shows how to create a new zoned datetime with a different year:
4386 ///
4387 /// ```
4388 /// use jiff::civil::date;
4389 ///
4390 /// let zdt1 = date(2005, 11, 5).at(15, 30, 0, 0).in_tz("America/New_York")?;
4391 /// assert_eq!(zdt1.year(), 2005);
4392 /// let zdt2 = zdt1.with().year(2007).build()?;
4393 /// assert_eq!(zdt2.year(), 2007);
4394 ///
4395 /// # Ok::<(), Box<dyn std::error::Error>>(())
4396 /// ```
4397 ///
4398 /// # Example: only changing the year can fail
4399 ///
4400 /// For example, while `2024-02-29T01:30:00[America/New_York]` is valid,
4401 /// `2023-02-29T01:30:00[America/New_York]` is not:
4402 ///
4403 /// ```
4404 /// use jiff::civil::date;
4405 ///
4406 /// let zdt = date(2024, 2, 29).at(1, 30, 0, 0).in_tz("America/New_York")?;
4407 /// assert!(zdt.with().year(2023).build().is_err());
4408 ///
4409 /// # Ok::<(), Box<dyn std::error::Error>>(())
4410 /// ```
4411 #[inline]
4412 pub fn year(self, year: i16) -> ZonedWith {
4413 ZonedWith { datetime_with: self.datetime_with.year(year), ..self }
4414 }
4415
4416 /// Set the year of a zoned datetime via its era and its non-negative
4417 /// numeric component.
4418 ///
4419 /// One can access this value via [`Zoned::era_year`].
4420 ///
4421 /// # Errors
4422 ///
4423 /// This returns an error when [`ZonedWith::build`] is called if the
4424 /// year is outside the range for the era specified. For [`Era::BCE`], the
4425 /// range is `1..=10000`. For [`Era::CE`], the range is `1..=9999`.
4426 ///
4427 /// # Example
4428 ///
4429 /// This shows that `CE` years are equivalent to the years used by this
4430 /// crate:
4431 ///
4432 /// ```
4433 /// use jiff::civil::{Era, date};
4434 ///
4435 /// let zdt1 = date(2005, 11, 5).at(8, 0, 0, 0).in_tz("America/New_York")?;
4436 /// assert_eq!(zdt1.year(), 2005);
4437 /// let zdt2 = zdt1.with().era_year(2007, Era::CE).build()?;
4438 /// assert_eq!(zdt2.year(), 2007);
4439 ///
4440 /// // CE years are always positive and can be at most 9999:
4441 /// assert!(zdt1.with().era_year(-5, Era::CE).build().is_err());
4442 /// assert!(zdt1.with().era_year(10_000, Era::CE).build().is_err());
4443 ///
4444 /// # Ok::<(), Box<dyn std::error::Error>>(())
4445 /// ```
4446 ///
4447 /// But `BCE` years always correspond to years less than or equal to `0`
4448 /// in this crate:
4449 ///
4450 /// ```
4451 /// use jiff::civil::{Era, date};
4452 ///
4453 /// let zdt1 = date(-27, 7, 1).at(8, 22, 30, 0).in_tz("America/New_York")?;
4454 /// assert_eq!(zdt1.year(), -27);
4455 /// assert_eq!(zdt1.era_year(), (28, Era::BCE));
4456 ///
4457 /// let zdt2 = zdt1.with().era_year(509, Era::BCE).build()?;
4458 /// assert_eq!(zdt2.year(), -508);
4459 /// assert_eq!(zdt2.era_year(), (509, Era::BCE));
4460 ///
4461 /// let zdt2 = zdt1.with().era_year(10_000, Era::BCE).build()?;
4462 /// assert_eq!(zdt2.year(), -9_999);
4463 /// assert_eq!(zdt2.era_year(), (10_000, Era::BCE));
4464 ///
4465 /// // BCE years are always positive and can be at most 10000:
4466 /// assert!(zdt1.with().era_year(-5, Era::BCE).build().is_err());
4467 /// assert!(zdt1.with().era_year(10_001, Era::BCE).build().is_err());
4468 ///
4469 /// # Ok::<(), Box<dyn std::error::Error>>(())
4470 /// ```
4471 ///
4472 /// # Example: overrides `ZonedWith::year`
4473 ///
4474 /// Setting this option will override any previous `ZonedWith::year`
4475 /// option:
4476 ///
4477 /// ```
4478 /// use jiff::civil::{Era, date};
4479 ///
4480 /// let zdt1 = date(2024, 7, 2).at(10, 27, 10, 123).in_tz("America/New_York")?;
4481 /// let zdt2 = zdt1.with().year(2000).era_year(1900, Era::CE).build()?;
4482 /// assert_eq!(
4483 /// zdt2,
4484 /// date(1900, 7, 2).at(10, 27, 10, 123).in_tz("America/New_York")?,
4485 /// );
4486 ///
4487 /// # Ok::<(), Box<dyn std::error::Error>>(())
4488 /// ```
4489 ///
4490 /// Similarly, `ZonedWith::year` will override any previous call to
4491 /// `ZonedWith::era_year`:
4492 ///
4493 /// ```
4494 /// use jiff::civil::{Era, date};
4495 ///
4496 /// let zdt1 = date(2024, 7, 2).at(19, 0, 1, 1).in_tz("America/New_York")?;
4497 /// let zdt2 = zdt1.with().era_year(1900, Era::CE).year(2000).build()?;
4498 /// assert_eq!(
4499 /// zdt2,
4500 /// date(2000, 7, 2).at(19, 0, 1, 1).in_tz("America/New_York")?,
4501 /// );
4502 ///
4503 /// # Ok::<(), Box<dyn std::error::Error>>(())
4504 /// ```
4505 #[inline]
4506 pub fn era_year(self, year: i16, era: Era) -> ZonedWith {
4507 ZonedWith {
4508 datetime_with: self.datetime_with.era_year(year, era),
4509 ..self
4510 }
4511 }
4512
4513 /// Set the month field on a [`Zoned`].
4514 ///
4515 /// One can access this value via [`Zoned::month`].
4516 ///
4517 /// This overrides any previous month settings.
4518 ///
4519 /// # Errors
4520 ///
4521 /// This returns an error when [`ZonedWith::build`] is called if the
4522 /// given month is outside the range `1..=12`. This can also return an
4523 /// error if the resulting date is otherwise invalid.
4524 ///
4525 /// # Example
4526 ///
4527 /// This shows how to create a new zoned datetime with a different month:
4528 ///
4529 /// ```
4530 /// use jiff::civil::date;
4531 ///
4532 /// let zdt1 = date(2005, 11, 5)
4533 /// .at(18, 3, 59, 123_456_789)
4534 /// .in_tz("America/New_York")?;
4535 /// assert_eq!(zdt1.month(), 11);
4536 ///
4537 /// let zdt2 = zdt1.with().month(6).build()?;
4538 /// assert_eq!(zdt2.month(), 6);
4539 ///
4540 /// # Ok::<(), Box<dyn std::error::Error>>(())
4541 /// ```
4542 ///
4543 /// # Example: only changing the month can fail
4544 ///
4545 /// For example, while `2024-10-31T00:00:00[America/New_York]` is valid,
4546 /// `2024-11-31T00:00:00[America/New_York]` is not:
4547 ///
4548 /// ```
4549 /// use jiff::civil::date;
4550 ///
4551 /// let zdt = date(2024, 10, 31).at(0, 0, 0, 0).in_tz("America/New_York")?;
4552 /// assert!(zdt.with().month(11).build().is_err());
4553 ///
4554 /// # Ok::<(), Box<dyn std::error::Error>>(())
4555 /// ```
4556 #[inline]
4557 pub fn month(self, month: i8) -> ZonedWith {
4558 ZonedWith { datetime_with: self.datetime_with.month(month), ..self }
4559 }
4560
4561 /// Set the day field on a [`Zoned`].
4562 ///
4563 /// One can access this value via [`Zoned::day`].
4564 ///
4565 /// This overrides any previous day settings.
4566 ///
4567 /// # Errors
4568 ///
4569 /// This returns an error when [`ZonedWith::build`] is called if the
4570 /// given given day is outside of allowable days for the corresponding year
4571 /// and month fields.
4572 ///
4573 /// # Example
4574 ///
4575 /// This shows some examples of setting the day, including a leap day:
4576 ///
4577 /// ```
4578 /// use jiff::civil::date;
4579 ///
4580 /// let zdt1 = date(2024, 2, 5).at(21, 59, 1, 999).in_tz("America/New_York")?;
4581 /// assert_eq!(zdt1.day(), 5);
4582 /// let zdt2 = zdt1.with().day(10).build()?;
4583 /// assert_eq!(zdt2.day(), 10);
4584 /// let zdt3 = zdt1.with().day(29).build()?;
4585 /// assert_eq!(zdt3.day(), 29);
4586 ///
4587 /// # Ok::<(), Box<dyn std::error::Error>>(())
4588 /// ```
4589 ///
4590 /// # Example: changing only the day can fail
4591 ///
4592 /// This shows some examples that will fail:
4593 ///
4594 /// ```
4595 /// use jiff::civil::date;
4596 ///
4597 /// let zdt1 = date(2023, 2, 5)
4598 /// .at(22, 58, 58, 9_999)
4599 /// .in_tz("America/New_York")?;
4600 /// // 2023 is not a leap year
4601 /// assert!(zdt1.with().day(29).build().is_err());
4602 ///
4603 /// // September has 30 days, not 31.
4604 /// let zdt1 = date(2023, 9, 5).in_tz("America/New_York")?;
4605 /// assert!(zdt1.with().day(31).build().is_err());
4606 ///
4607 /// # Ok::<(), Box<dyn std::error::Error>>(())
4608 /// ```
4609 #[inline]
4610 pub fn day(self, day: i8) -> ZonedWith {
4611 ZonedWith { datetime_with: self.datetime_with.day(day), ..self }
4612 }
4613
4614 /// Set the day field on a [`Zoned`] via the ordinal number of a day
4615 /// within a year.
4616 ///
4617 /// When used, any settings for month are ignored since the month is
4618 /// determined by the day of the year.
4619 ///
4620 /// The valid values for `day` are `1..=366`. Note though that `366` is
4621 /// only valid for leap years.
4622 ///
4623 /// This overrides any previous day settings.
4624 ///
4625 /// # Errors
4626 ///
4627 /// This returns an error when [`ZonedWith::build`] is called if the
4628 /// given day is outside the allowed range of `1..=366`, or when a value of
4629 /// `366` is given for a non-leap year.
4630 ///
4631 /// # Example
4632 ///
4633 /// This demonstrates that if a year is a leap year, then `60` corresponds
4634 /// to February 29:
4635 ///
4636 /// ```
4637 /// use jiff::civil::date;
4638 ///
4639 /// let zdt = date(2024, 1, 1)
4640 /// .at(23, 59, 59, 999_999_999)
4641 /// .in_tz("America/New_York")?;
4642 /// assert_eq!(
4643 /// zdt.with().day_of_year(60).build()?,
4644 /// date(2024, 2, 29)
4645 /// .at(23, 59, 59, 999_999_999)
4646 /// .in_tz("America/New_York")?,
4647 /// );
4648 ///
4649 /// # Ok::<(), Box<dyn std::error::Error>>(())
4650 /// ```
4651 ///
4652 /// But for non-leap years, day 60 is March 1:
4653 ///
4654 /// ```
4655 /// use jiff::civil::date;
4656 ///
4657 /// let zdt = date(2023, 1, 1)
4658 /// .at(23, 59, 59, 999_999_999)
4659 /// .in_tz("America/New_York")?;
4660 /// assert_eq!(
4661 /// zdt.with().day_of_year(60).build()?,
4662 /// date(2023, 3, 1)
4663 /// .at(23, 59, 59, 999_999_999)
4664 /// .in_tz("America/New_York")?,
4665 /// );
4666 ///
4667 /// # Ok::<(), Box<dyn std::error::Error>>(())
4668 /// ```
4669 ///
4670 /// And using `366` for a non-leap year will result in an error, since
4671 /// non-leap years only have 365 days:
4672 ///
4673 /// ```
4674 /// use jiff::civil::date;
4675 ///
4676 /// let zdt = date(2023, 1, 1).at(0, 0, 0, 0).in_tz("America/New_York")?;
4677 /// assert!(zdt.with().day_of_year(366).build().is_err());
4678 /// // The maximal year is not a leap year, so it returns an error too.
4679 /// let zdt = date(9999, 1, 1).at(0, 0, 0, 0).in_tz("America/New_York")?;
4680 /// assert!(zdt.with().day_of_year(366).build().is_err());
4681 ///
4682 /// # Ok::<(), Box<dyn std::error::Error>>(())
4683 /// ```
4684 #[inline]
4685 pub fn day_of_year(self, day: i16) -> ZonedWith {
4686 ZonedWith {
4687 datetime_with: self.datetime_with.day_of_year(day),
4688 ..self
4689 }
4690 }
4691
4692 /// Set the day field on a [`Zoned`] via the ordinal number of a day
4693 /// within a year, but ignoring leap years.
4694 ///
4695 /// When used, any settings for month are ignored since the month is
4696 /// determined by the day of the year.
4697 ///
4698 /// The valid values for `day` are `1..=365`. The value `365` always
4699 /// corresponds to the last day of the year, even for leap years. It is
4700 /// impossible for this routine to return a zoned datetime corresponding to
4701 /// February 29. (Unless there is a relevant time zone transition that
4702 /// provokes disambiguation that shifts the datetime into February 29.)
4703 ///
4704 /// This overrides any previous day settings.
4705 ///
4706 /// # Errors
4707 ///
4708 /// This returns an error when [`ZonedWith::build`] is called if the
4709 /// given day is outside the allowed range of `1..=365`.
4710 ///
4711 /// # Example
4712 ///
4713 /// This demonstrates that `60` corresponds to March 1, regardless of
4714 /// whether the year is a leap year or not:
4715 ///
4716 /// ```
4717 /// use jiff::civil::date;
4718 ///
4719 /// let zdt = date(2023, 1, 1)
4720 /// .at(23, 59, 59, 999_999_999)
4721 /// .in_tz("America/New_York")?;
4722 /// assert_eq!(
4723 /// zdt.with().day_of_year_no_leap(60).build()?,
4724 /// date(2023, 3, 1)
4725 /// .at(23, 59, 59, 999_999_999)
4726 /// .in_tz("America/New_York")?,
4727 /// );
4728 ///
4729 /// let zdt = date(2024, 1, 1)
4730 /// .at(23, 59, 59, 999_999_999)
4731 /// .in_tz("America/New_York")?;
4732 /// assert_eq!(
4733 /// zdt.with().day_of_year_no_leap(60).build()?,
4734 /// date(2024, 3, 1)
4735 /// .at(23, 59, 59, 999_999_999)
4736 /// .in_tz("America/New_York")?,
4737 /// );
4738 ///
4739 /// # Ok::<(), Box<dyn std::error::Error>>(())
4740 /// ```
4741 ///
4742 /// And using `365` for any year will always yield the last day of the
4743 /// year:
4744 ///
4745 /// ```
4746 /// use jiff::civil::date;
4747 ///
4748 /// let zdt = date(2023, 1, 1)
4749 /// .at(23, 59, 59, 999_999_999)
4750 /// .in_tz("America/New_York")?;
4751 /// assert_eq!(
4752 /// zdt.with().day_of_year_no_leap(365).build()?,
4753 /// zdt.last_of_year()?,
4754 /// );
4755 ///
4756 /// let zdt = date(2024, 1, 1)
4757 /// .at(23, 59, 59, 999_999_999)
4758 /// .in_tz("America/New_York")?;
4759 /// assert_eq!(
4760 /// zdt.with().day_of_year_no_leap(365).build()?,
4761 /// zdt.last_of_year()?,
4762 /// );
4763 ///
4764 /// // Careful at the boundaries. The last day of the year isn't
4765 /// // representable with all time zones. For example:
4766 /// let zdt = date(9999, 1, 1)
4767 /// .at(23, 59, 59, 999_999_999)
4768 /// .in_tz("America/New_York")?;
4769 /// assert!(zdt.with().day_of_year_no_leap(365).build().is_err());
4770 /// // But with other time zones, it works okay:
4771 /// let zdt = date(9999, 1, 1)
4772 /// .at(23, 59, 59, 999_999_999)
4773 /// .to_zoned(jiff::tz::TimeZone::fixed(jiff::tz::Offset::MAX))?;
4774 /// assert_eq!(
4775 /// zdt.with().day_of_year_no_leap(365).build()?,
4776 /// zdt.last_of_year()?,
4777 /// );
4778 ///
4779 /// # Ok::<(), Box<dyn std::error::Error>>(())
4780 /// ```
4781 ///
4782 /// A value of `366` is out of bounds, even for leap years:
4783 ///
4784 /// ```
4785 /// use jiff::civil::date;
4786 ///
4787 /// let zdt = date(2024, 1, 1).at(5, 30, 0, 0).in_tz("America/New_York")?;
4788 /// assert!(zdt.with().day_of_year_no_leap(366).build().is_err());
4789 ///
4790 /// # Ok::<(), Box<dyn std::error::Error>>(())
4791 /// ```
4792 #[inline]
4793 pub fn day_of_year_no_leap(self, day: i16) -> ZonedWith {
4794 ZonedWith {
4795 datetime_with: self.datetime_with.day_of_year_no_leap(day),
4796 ..self
4797 }
4798 }
4799
4800 /// Set the hour field on a [`Zoned`].
4801 ///
4802 /// One can access this value via [`Zoned::hour`].
4803 ///
4804 /// This overrides any previous hour settings.
4805 ///
4806 /// # Errors
4807 ///
4808 /// This returns an error when [`ZonedWith::build`] is called if the
4809 /// given hour is outside the range `0..=23`.
4810 ///
4811 /// # Example
4812 ///
4813 /// ```
4814 /// use jiff::civil::time;
4815 ///
4816 /// let zdt1 = time(15, 21, 59, 0).on(2010, 6, 1).in_tz("America/New_York")?;
4817 /// assert_eq!(zdt1.hour(), 15);
4818 /// let zdt2 = zdt1.with().hour(3).build()?;
4819 /// assert_eq!(zdt2.hour(), 3);
4820 ///
4821 /// # Ok::<(), Box<dyn std::error::Error>>(())
4822 /// ```
4823 #[inline]
4824 pub fn hour(self, hour: i8) -> ZonedWith {
4825 ZonedWith { datetime_with: self.datetime_with.hour(hour), ..self }
4826 }
4827
4828 /// Set the minute field on a [`Zoned`].
4829 ///
4830 /// One can access this value via [`Zoned::minute`].
4831 ///
4832 /// This overrides any previous minute settings.
4833 ///
4834 /// # Errors
4835 ///
4836 /// This returns an error when [`ZonedWith::build`] is called if the
4837 /// given minute is outside the range `0..=59`.
4838 ///
4839 /// # Example
4840 ///
4841 /// ```
4842 /// use jiff::civil::time;
4843 ///
4844 /// let zdt1 = time(15, 21, 59, 0).on(2010, 6, 1).in_tz("America/New_York")?;
4845 /// assert_eq!(zdt1.minute(), 21);
4846 /// let zdt2 = zdt1.with().minute(3).build()?;
4847 /// assert_eq!(zdt2.minute(), 3);
4848 ///
4849 /// # Ok::<(), Box<dyn std::error::Error>>(())
4850 /// ```
4851 #[inline]
4852 pub fn minute(self, minute: i8) -> ZonedWith {
4853 ZonedWith { datetime_with: self.datetime_with.minute(minute), ..self }
4854 }
4855
4856 /// Set the second field on a [`Zoned`].
4857 ///
4858 /// One can access this value via [`Zoned::second`].
4859 ///
4860 /// This overrides any previous second settings.
4861 ///
4862 /// # Errors
4863 ///
4864 /// This returns an error when [`ZonedWith::build`] is called if the
4865 /// given second is outside the range `0..=59`.
4866 ///
4867 /// # Example
4868 ///
4869 /// ```
4870 /// use jiff::civil::time;
4871 ///
4872 /// let zdt1 = time(15, 21, 59, 0).on(2010, 6, 1).in_tz("America/New_York")?;
4873 /// assert_eq!(zdt1.second(), 59);
4874 /// let zdt2 = zdt1.with().second(3).build()?;
4875 /// assert_eq!(zdt2.second(), 3);
4876 ///
4877 /// # Ok::<(), Box<dyn std::error::Error>>(())
4878 /// ```
4879 #[inline]
4880 pub fn second(self, second: i8) -> ZonedWith {
4881 ZonedWith { datetime_with: self.datetime_with.second(second), ..self }
4882 }
4883
4884 /// Set the millisecond field on a [`Zoned`].
4885 ///
4886 /// One can access this value via [`Zoned::millisecond`].
4887 ///
4888 /// This overrides any previous millisecond settings.
4889 ///
4890 /// # Errors
4891 ///
4892 /// This returns an error when [`ZonedWith::build`] is called if the
4893 /// given millisecond is outside the range `0..=999`, or if both this and
4894 /// [`ZonedWith::subsec_nanosecond`] are set.
4895 ///
4896 /// # Example
4897 ///
4898 /// This shows the relationship between [`Zoned::millisecond`] and
4899 /// [`Zoned::subsec_nanosecond`]:
4900 ///
4901 /// ```
4902 /// use jiff::civil::time;
4903 ///
4904 /// let zdt1 = time(15, 21, 35, 0).on(2010, 6, 1).in_tz("America/New_York")?;
4905 /// let zdt2 = zdt1.with().millisecond(123).build()?;
4906 /// assert_eq!(zdt2.subsec_nanosecond(), 123_000_000);
4907 ///
4908 /// # Ok::<(), Box<dyn std::error::Error>>(())
4909 /// ```
4910 #[inline]
4911 pub fn millisecond(self, millisecond: i16) -> ZonedWith {
4912 ZonedWith {
4913 datetime_with: self.datetime_with.millisecond(millisecond),
4914 ..self
4915 }
4916 }
4917
4918 /// Set the microsecond field on a [`Zoned`].
4919 ///
4920 /// One can access this value via [`Zoned::microsecond`].
4921 ///
4922 /// This overrides any previous microsecond settings.
4923 ///
4924 /// # Errors
4925 ///
4926 /// This returns an error when [`ZonedWith::build`] is called if the
4927 /// given microsecond is outside the range `0..=999`, or if both this and
4928 /// [`ZonedWith::subsec_nanosecond`] are set.
4929 ///
4930 /// # Example
4931 ///
4932 /// This shows the relationship between [`Zoned::microsecond`] and
4933 /// [`Zoned::subsec_nanosecond`]:
4934 ///
4935 /// ```
4936 /// use jiff::civil::time;
4937 ///
4938 /// let zdt1 = time(15, 21, 35, 0).on(2010, 6, 1).in_tz("America/New_York")?;
4939 /// let zdt2 = zdt1.with().microsecond(123).build()?;
4940 /// assert_eq!(zdt2.subsec_nanosecond(), 123_000);
4941 ///
4942 /// # Ok::<(), Box<dyn std::error::Error>>(())
4943 /// ```
4944 #[inline]
4945 pub fn microsecond(self, microsecond: i16) -> ZonedWith {
4946 ZonedWith {
4947 datetime_with: self.datetime_with.microsecond(microsecond),
4948 ..self
4949 }
4950 }
4951
4952 /// Set the nanosecond field on a [`Zoned`].
4953 ///
4954 /// One can access this value via [`Zoned::nanosecond`].
4955 ///
4956 /// This overrides any previous nanosecond settings.
4957 ///
4958 /// # Errors
4959 ///
4960 /// This returns an error when [`ZonedWith::build`] is called if the
4961 /// given nanosecond is outside the range `0..=999`, or if both this and
4962 /// [`ZonedWith::subsec_nanosecond`] are set.
4963 ///
4964 /// # Example
4965 ///
4966 /// This shows the relationship between [`Zoned::nanosecond`] and
4967 /// [`Zoned::subsec_nanosecond`]:
4968 ///
4969 /// ```
4970 /// use jiff::civil::time;
4971 ///
4972 /// let zdt1 = time(15, 21, 35, 0).on(2010, 6, 1).in_tz("America/New_York")?;
4973 /// let zdt2 = zdt1.with().nanosecond(123).build()?;
4974 /// assert_eq!(zdt2.subsec_nanosecond(), 123);
4975 ///
4976 /// # Ok::<(), Box<dyn std::error::Error>>(())
4977 /// ```
4978 #[inline]
4979 pub fn nanosecond(self, nanosecond: i16) -> ZonedWith {
4980 ZonedWith {
4981 datetime_with: self.datetime_with.nanosecond(nanosecond),
4982 ..self
4983 }
4984 }
4985
4986 /// Set the subsecond nanosecond field on a [`Zoned`].
4987 ///
4988 /// If you want to access this value on `Zoned`, then use
4989 /// [`Zoned::subsec_nanosecond`].
4990 ///
4991 /// This overrides any previous subsecond nanosecond settings.
4992 ///
4993 /// # Errors
4994 ///
4995 /// This returns an error when [`ZonedWith::build`] is called if the
4996 /// given subsecond nanosecond is outside the range `0..=999,999,999`,
4997 /// or if both this and one of [`ZonedWith::millisecond`],
4998 /// [`ZonedWith::microsecond`] or [`ZonedWith::nanosecond`] are set.
4999 ///
5000 /// # Example
5001 ///
5002 /// This shows the relationship between constructing a `Zoned` value
5003 /// with subsecond nanoseconds and its individual subsecond fields:
5004 ///
5005 /// ```
5006 /// use jiff::civil::time;
5007 ///
5008 /// let zdt1 = time(15, 21, 35, 0).on(2010, 6, 1).in_tz("America/New_York")?;
5009 /// let zdt2 = zdt1.with().subsec_nanosecond(123_456_789).build()?;
5010 /// assert_eq!(zdt2.millisecond(), 123);
5011 /// assert_eq!(zdt2.microsecond(), 456);
5012 /// assert_eq!(zdt2.nanosecond(), 789);
5013 ///
5014 /// # Ok::<(), Box<dyn std::error::Error>>(())
5015 /// ```
5016 #[inline]
5017 pub fn subsec_nanosecond(self, subsec_nanosecond: i32) -> ZonedWith {
5018 ZonedWith {
5019 datetime_with: self
5020 .datetime_with
5021 .subsec_nanosecond(subsec_nanosecond),
5022 ..self
5023 }
5024 }
5025
5026 /// Set the offset to use in the new zoned datetime.
5027 ///
5028 /// This can be used in some cases to explicitly disambiguate a datetime
5029 /// that could correspond to multiple instants in time.
5030 ///
5031 /// How the offset is used to construct a new zoned datetime
5032 /// depends on the offset conflict resolution strategy
5033 /// set via [`ZonedWith::offset_conflict`]. The default is
5034 /// [`OffsetConflict::PreferOffset`], which will always try to use the
5035 /// offset to resolve a datetime to an instant, unless the offset is
5036 /// incorrect for this zoned datetime's time zone. In which case, only the
5037 /// time zone is used to select the correct offset (which may involve using
5038 /// the disambiguation strategy set via [`ZonedWith::disambiguation`]).
5039 ///
5040 /// # Example
5041 ///
5042 /// This example shows parsing the first time the 1 o'clock hour appeared
5043 /// on a clock in New York on 2024-11-03, and then changing only the
5044 /// offset to flip it to the second time 1 o'clock appeared on the clock:
5045 ///
5046 /// ```
5047 /// use jiff::{tz, Zoned};
5048 ///
5049 /// let zdt1: Zoned = "2024-11-03 01:30-04[America/New_York]".parse()?;
5050 /// let zdt2 = zdt1.with().offset(tz::offset(-5)).build()?;
5051 /// assert_eq!(
5052 /// zdt2.to_string(),
5053 /// // Everything stays the same, except for the offset.
5054 /// "2024-11-03T01:30:00-05:00[America/New_York]",
5055 /// );
5056 ///
5057 /// // If we use an invalid offset for the America/New_York time zone,
5058 /// // then it will be ignored and the disambiguation strategy set will
5059 /// // be used.
5060 /// let zdt3 = zdt1.with().offset(tz::offset(-12)).build()?;
5061 /// assert_eq!(
5062 /// zdt3.to_string(),
5063 /// // The default disambiguation is Compatible.
5064 /// "2024-11-03T01:30:00-04:00[America/New_York]",
5065 /// );
5066 /// // But we could change the disambiguation strategy to reject such
5067 /// // cases!
5068 /// let result = zdt1
5069 /// .with()
5070 /// .offset(tz::offset(-12))
5071 /// .disambiguation(tz::Disambiguation::Reject)
5072 /// .build();
5073 /// assert!(result.is_err());
5074 ///
5075 /// # Ok::<(), Box<dyn std::error::Error>>(())
5076 /// ```
5077 #[inline]
5078 pub fn offset(self, offset: Offset) -> ZonedWith {
5079 ZonedWith { offset: Some(offset), ..self }
5080 }
5081
5082 /// Set the conflict resolution strategy for when an offset is inconsistent
5083 /// with the time zone.
5084 ///
5085 /// See the documentation on [`OffsetConflict`] for more details about the
5086 /// different strategies one can choose.
5087 ///
5088 /// Unlike parsing (where the default is `OffsetConflict::Reject`), the
5089 /// default for `ZonedWith` is [`OffsetConflict::PreferOffset`], which
5090 /// avoids daylight saving time disambiguation causing unexpected 1-hour
5091 /// shifts after small changes to clock time.
5092 ///
5093 /// # Example
5094 ///
5095 /// ```
5096 /// use jiff::Zoned;
5097 ///
5098 /// // Set to the "second" time 1:30 is on the clocks in New York on
5099 /// // 2024-11-03. The offset in the datetime string makes this
5100 /// // unambiguous.
5101 /// let zdt1 = "2024-11-03T01:30-05[America/New_York]".parse::<Zoned>()?;
5102 /// // Now we change the minute field:
5103 /// let zdt2 = zdt1.with().minute(34).build()?;
5104 /// assert_eq!(
5105 /// zdt2.to_string(),
5106 /// // Without taking the offset of the `Zoned` value into account,
5107 /// // this would have defaulted to using the "compatible"
5108 /// // disambiguation strategy, which would have selected the earlier
5109 /// // offset of -04 instead of sticking with the later offset of -05.
5110 /// "2024-11-03T01:34:00-05:00[America/New_York]",
5111 /// );
5112 ///
5113 /// // But note that if we change the clock time such that the previous
5114 /// // offset is no longer valid (by moving back before DST ended), then
5115 /// // the default strategy will automatically adapt and change the offset.
5116 /// let zdt2 = zdt1.with().hour(0).build()?;
5117 /// assert_eq!(
5118 /// zdt2.to_string(),
5119 /// "2024-11-03T00:30:00-04:00[America/New_York]",
5120 /// );
5121 ///
5122 /// # Ok::<(), Box<dyn std::error::Error>>(())
5123 /// ```
5124 #[inline]
5125 pub fn offset_conflict(self, strategy: OffsetConflict) -> ZonedWith {
5126 ZonedWith { offset_conflict: strategy, ..self }
5127 }
5128
5129 /// Set the disambiguation strategy for when a zoned datetime falls into a
5130 /// time zone transition "fold" or "gap."
5131 ///
5132 /// The most common manifestation of such time zone transitions is daylight
5133 /// saving time. In most cases, the transition into daylight saving time
5134 /// moves the civil time ("the time you see on the clock") ahead one hour.
5135 /// This is called a "gap" because an hour on the clock is skipped. While
5136 /// the transition out of daylight saving time moves the civil time back
5137 /// one hour. This is called a "fold" because an hour on the clock is
5138 /// repeated.
5139 ///
5140 /// In the case of a gap, an ambiguous datetime manifests as a time that
5141 /// never appears on a clock. (For example, `02:30` on `2024-03-10` in New
5142 /// York.) In the case of a fold, an ambiguous datetime manifests as a
5143 /// time that repeats itself. (For example, `01:30` on `2024-11-03` in New
5144 /// York.) So when a fold occurs, you don't know whether it's the "first"
5145 /// occurrence of that time or the "second."
5146 ///
5147 /// Time zone transitions are not just limited to daylight saving time,
5148 /// although those are the most common. In other cases, a transition occurs
5149 /// because of a change in the offset of the time zone itself. (See the
5150 /// examples below.)
5151 ///
5152 /// # Example: time zone offset change
5153 ///
5154 /// In this example, we explore a time zone offset change in Hawaii that
5155 /// occurred on `1947-06-08`. Namely, Hawaii went from a `-10:30` offset
5156 /// to a `-10:00` offset at `02:00`. This results in a 30 minute gap in
5157 /// civil time.
5158 ///
5159 /// ```
5160 /// use jiff::{civil::date, tz, ToSpan, Zoned};
5161 ///
5162 /// // This datetime is unambiguous...
5163 /// let zdt1 = "1943-06-02T02:05[Pacific/Honolulu]".parse::<Zoned>()?;
5164 /// // but... 02:05 didn't exist on clocks on 1947-06-08.
5165 /// let zdt2 = zdt1
5166 /// .with()
5167 /// .disambiguation(tz::Disambiguation::Later)
5168 /// .year(1947)
5169 /// .day(8)
5170 /// .build()?;
5171 /// // Our parser is configured to select the later time, so we jump to
5172 /// // 02:35. But if we used `Disambiguation::Earlier`, then we'd get
5173 /// // 01:35.
5174 /// assert_eq!(zdt2.datetime(), date(1947, 6, 8).at(2, 35, 0, 0));
5175 /// assert_eq!(zdt2.offset(), tz::offset(-10));
5176 ///
5177 /// // If we subtract 10 minutes from 02:35, notice that we (correctly)
5178 /// // jump to 01:55 *and* our offset is corrected to -10:30.
5179 /// let zdt3 = zdt2.checked_sub(10.minutes())?;
5180 /// assert_eq!(zdt3.datetime(), date(1947, 6, 8).at(1, 55, 0, 0));
5181 /// assert_eq!(zdt3.offset(), tz::offset(-10).saturating_sub(30.minutes()));
5182 ///
5183 /// # Ok::<(), Box<dyn std::error::Error>>(())
5184 /// ```
5185 ///
5186 /// # Example: offset conflict resolution and disambiguation
5187 ///
5188 /// This example shows how the disambiguation configuration can
5189 /// interact with the default offset conflict resolution strategy of
5190 /// [`OffsetConflict::PreferOffset`]:
5191 ///
5192 /// ```
5193 /// use jiff::{civil::date, tz, Zoned};
5194 ///
5195 /// // This datetime is unambiguous.
5196 /// let zdt1 = "2024-03-11T02:05[America/New_York]".parse::<Zoned>()?;
5197 /// assert_eq!(zdt1.offset(), tz::offset(-4));
5198 /// // But the same time on March 10 is ambiguous because there is a gap!
5199 /// let zdt2 = zdt1
5200 /// .with()
5201 /// .disambiguation(tz::Disambiguation::Earlier)
5202 /// .day(10)
5203 /// .build()?;
5204 /// assert_eq!(zdt2.datetime(), date(2024, 3, 10).at(1, 5, 0, 0));
5205 /// assert_eq!(zdt2.offset(), tz::offset(-5));
5206 ///
5207 /// # Ok::<(), Box<dyn std::error::Error>>(())
5208 /// ```
5209 ///
5210 /// Namely, while we started with an offset of `-04`, it (along with all
5211 /// other offsets) are considered invalid during civil time gaps due to
5212 /// time zone transitions (such as the beginning of daylight saving time in
5213 /// most locations).
5214 ///
5215 /// The default disambiguation strategy is
5216 /// [`Disambiguation::Compatible`], which in the case of gaps, chooses the
5217 /// time after the gap:
5218 ///
5219 /// ```
5220 /// use jiff::{civil::date, tz, Zoned};
5221 ///
5222 /// // This datetime is unambiguous.
5223 /// let zdt1 = "2024-03-11T02:05[America/New_York]".parse::<Zoned>()?;
5224 /// assert_eq!(zdt1.offset(), tz::offset(-4));
5225 /// // But the same time on March 10 is ambiguous because there is a gap!
5226 /// let zdt2 = zdt1
5227 /// .with()
5228 /// .day(10)
5229 /// .build()?;
5230 /// assert_eq!(zdt2.datetime(), date(2024, 3, 10).at(3, 5, 0, 0));
5231 /// assert_eq!(zdt2.offset(), tz::offset(-4));
5232 ///
5233 /// # Ok::<(), Box<dyn std::error::Error>>(())
5234 /// ```
5235 ///
5236 /// Alternatively, one can choose to always respect the offset, and thus
5237 /// civil time for the provided time zone will be adjusted to match the
5238 /// instant prescribed by the offset. In this case, no disambiguation is
5239 /// performed:
5240 ///
5241 /// ```
5242 /// use jiff::{civil::date, tz, Zoned};
5243 ///
5244 /// // This datetime is unambiguous. But `2024-03-10T02:05` is!
5245 /// let zdt1 = "2024-03-11T02:05[America/New_York]".parse::<Zoned>()?;
5246 /// assert_eq!(zdt1.offset(), tz::offset(-4));
5247 /// // But the same time on March 10 is ambiguous because there is a gap!
5248 /// let zdt2 = zdt1
5249 /// .with()
5250 /// .offset_conflict(tz::OffsetConflict::AlwaysOffset)
5251 /// .day(10)
5252 /// .build()?;
5253 /// // Why do we get this result? Because `2024-03-10T02:05-04` is
5254 /// // `2024-03-10T06:05Z`. And in `America/New_York`, the civil time
5255 /// // for that timestamp is `2024-03-10T01:05-05`.
5256 /// assert_eq!(zdt2.datetime(), date(2024, 3, 10).at(1, 5, 0, 0));
5257 /// assert_eq!(zdt2.offset(), tz::offset(-5));
5258 ///
5259 /// # Ok::<(), Box<dyn std::error::Error>>(())
5260 /// ```
5261 #[inline]
5262 pub fn disambiguation(self, strategy: Disambiguation) -> ZonedWith {
5263 ZonedWith { disambiguation: strategy, ..self }
5264 }
5265}
5266
5267#[inline]
5268fn day_length(
5269 dt: DateTime,
5270 tz: TimeZone,
5271) -> Result<ZonedDayNanoseconds, Error> {
5272 // FIXME: We should be doing this with a &TimeZone, but will need a
5273 // refactor so that we do zone-aware arithmetic using just a Timestamp and
5274 // a &TimeZone.
5275 let tz2 = tz.clone();
5276 let start = dt.start_of_day().to_zoned(tz).with_context(move || {
5277 let tzname = tz2.diagnostic_name();
5278 err!("failed to find start of day for {dt} in time zone {tzname}")
5279 })?;
5280 let end = start.checked_add(Span::new().days_ranged(C(1))).with_context(
5281 || err!("failed to add 1 day to {start} to find length of day"),
5282 )?;
5283 let span = start
5284 .timestamp()
5285 .until((Unit::Nanosecond, end.timestamp()))
5286 .with_context(|| {
5287 err!(
5288 "failed to compute span in nanoseconds \
5289 from {start} until {end}"
5290 )
5291 })?;
5292 let nanos = span.get_nanoseconds_ranged();
5293 ZonedDayNanoseconds::try_rfrom("nanoseconds-per-zoned-day", nanos)
5294 .with_context(|| {
5295 err!(
5296 "failed to convert span between {start} until {end} \
5297 to nanoseconds",
5298 )
5299 })
5300}
5301
5302#[cfg(test)]
5303mod tests {
5304 use std::io::Cursor;
5305
5306 use alloc::string::ToString;
5307
5308 use crate::{
5309 civil::{date, datetime},
5310 span::span_eq,
5311 tz, ToSpan,
5312 };
5313
5314 use super::*;
5315
5316 #[test]
5317 fn until_with_largest_unit() {
5318 if crate::tz::db().is_definitively_empty() {
5319 return;
5320 }
5321
5322 let zdt1: Zoned = date(1995, 12, 7)
5323 .at(3, 24, 30, 3500)
5324 .in_tz("Asia/Kolkata")
5325 .unwrap();
5326 let zdt2: Zoned =
5327 date(2019, 1, 31).at(15, 30, 0, 0).in_tz("Asia/Kolkata").unwrap();
5328 let span = zdt1.until(&zdt2).unwrap();
5329 span_eq!(
5330 span,
5331 202956
5332 .hours()
5333 .minutes(5)
5334 .seconds(29)
5335 .milliseconds(999)
5336 .microseconds(996)
5337 .nanoseconds(500)
5338 );
5339 let span = zdt1.until((Unit::Year, &zdt2)).unwrap();
5340 span_eq!(
5341 span,
5342 23.years()
5343 .months(1)
5344 .days(24)
5345 .hours(12)
5346 .minutes(5)
5347 .seconds(29)
5348 .milliseconds(999)
5349 .microseconds(996)
5350 .nanoseconds(500)
5351 );
5352
5353 let span = zdt2.until((Unit::Year, &zdt1)).unwrap();
5354 span_eq!(
5355 span,
5356 -23.years()
5357 .months(1)
5358 .days(24)
5359 .hours(12)
5360 .minutes(5)
5361 .seconds(29)
5362 .milliseconds(999)
5363 .microseconds(996)
5364 .nanoseconds(500)
5365 );
5366 let span = zdt1.until((Unit::Nanosecond, &zdt2)).unwrap();
5367 span_eq!(span, 730641929999996500i64.nanoseconds());
5368
5369 let zdt1: Zoned =
5370 date(2020, 1, 1).at(0, 0, 0, 0).in_tz("America/New_York").unwrap();
5371 let zdt2: Zoned = date(2020, 4, 24)
5372 .at(21, 0, 0, 0)
5373 .in_tz("America/New_York")
5374 .unwrap();
5375 let span = zdt1.until(&zdt2).unwrap();
5376 span_eq!(span, 2756.hours());
5377 let span = zdt1.until((Unit::Year, &zdt2)).unwrap();
5378 span_eq!(span, 3.months().days(23).hours(21));
5379
5380 let zdt1: Zoned = date(2000, 10, 29)
5381 .at(0, 0, 0, 0)
5382 .in_tz("America/Vancouver")
5383 .unwrap();
5384 let zdt2: Zoned = date(2000, 10, 29)
5385 .at(23, 0, 0, 5)
5386 .in_tz("America/Vancouver")
5387 .unwrap();
5388 let span = zdt1.until((Unit::Day, &zdt2)).unwrap();
5389 span_eq!(span, 24.hours().nanoseconds(5));
5390 }
5391
5392 #[cfg(target_pointer_width = "64")]
5393 #[test]
5394 fn zoned_size() {
5395 #[cfg(debug_assertions)]
5396 {
5397 #[cfg(feature = "alloc")]
5398 {
5399 assert_eq!(96, core::mem::size_of::<Zoned>());
5400 }
5401 #[cfg(all(target_pointer_width = "64", not(feature = "alloc")))]
5402 {
5403 assert_eq!(104, core::mem::size_of::<Zoned>());
5404 }
5405 }
5406 #[cfg(not(debug_assertions))]
5407 {
5408 #[cfg(feature = "alloc")]
5409 {
5410 assert_eq!(40, core::mem::size_of::<Zoned>());
5411 }
5412 #[cfg(all(target_pointer_width = "64", not(feature = "alloc")))]
5413 {
5414 // This asserts the same value as the alloc value above, but
5415 // it wasn't always this way, which is why it's written out
5416 // separately. Moreover, in theory, I'd be open to regressing
5417 // this value if it led to an improvement in alloc-mode. But
5418 // more likely, it would be nice to decrease this size in
5419 // non-alloc modes.
5420 assert_eq!(40, core::mem::size_of::<Zoned>());
5421 }
5422 }
5423 }
5424
5425 /// A `serde` deserializer compatibility test.
5426 ///
5427 /// Serde YAML used to be unable to deserialize `jiff` types,
5428 /// as deserializing from bytes is not supported by the deserializer.
5429 ///
5430 /// - <https://github.com/BurntSushi/jiff/issues/138>
5431 /// - <https://github.com/BurntSushi/jiff/discussions/148>
5432 #[test]
5433 fn zoned_deserialize_yaml() {
5434 if crate::tz::db().is_definitively_empty() {
5435 return;
5436 }
5437
5438 let expected = datetime(2024, 10, 31, 16, 33, 53, 123456789)
5439 .in_tz("UTC")
5440 .unwrap();
5441
5442 let deserialized: Zoned =
5443 serde_yaml::from_str("2024-10-31T16:33:53.123456789+00:00[UTC]")
5444 .unwrap();
5445
5446 assert_eq!(deserialized, expected);
5447
5448 let deserialized: Zoned = serde_yaml::from_slice(
5449 "2024-10-31T16:33:53.123456789+00:00[UTC]".as_bytes(),
5450 )
5451 .unwrap();
5452
5453 assert_eq!(deserialized, expected);
5454
5455 let cursor = Cursor::new(b"2024-10-31T16:33:53.123456789+00:00[UTC]");
5456 let deserialized: Zoned = serde_yaml::from_reader(cursor).unwrap();
5457
5458 assert_eq!(deserialized, expected);
5459 }
5460
5461 /// This is a regression test for a case where changing a zoned datetime
5462 /// to have a time of midnight ends up producing a counter-intuitive
5463 /// result.
5464 ///
5465 /// See: <https://github.com/BurntSushi/jiff/issues/211>
5466 #[test]
5467 fn zoned_with_time_dst_after_gap() {
5468 if crate::tz::db().is_definitively_empty() {
5469 return;
5470 }
5471
5472 let zdt1: Zoned = "2024-03-31T12:00[Atlantic/Azores]".parse().unwrap();
5473 assert_eq!(
5474 zdt1.to_string(),
5475 "2024-03-31T12:00:00+00:00[Atlantic/Azores]"
5476 );
5477
5478 let zdt2 = zdt1.with().time(Time::midnight()).build().unwrap();
5479 assert_eq!(
5480 zdt2.to_string(),
5481 "2024-03-31T01:00:00+00:00[Atlantic/Azores]"
5482 );
5483 }
5484
5485 /// Similar to `zoned_with_time_dst_after_gap`, but tests what happens
5486 /// when moving from/to both sides of the gap.
5487 ///
5488 /// See: <https://github.com/BurntSushi/jiff/issues/211>
5489 #[test]
5490 fn zoned_with_time_dst_us_eastern() {
5491 if crate::tz::db().is_definitively_empty() {
5492 return;
5493 }
5494
5495 let zdt1: Zoned = "2024-03-10T01:30[US/Eastern]".parse().unwrap();
5496 assert_eq!(zdt1.to_string(), "2024-03-10T01:30:00-05:00[US/Eastern]");
5497 let zdt2 = zdt1.with().hour(2).build().unwrap();
5498 assert_eq!(zdt2.to_string(), "2024-03-10T03:30:00-04:00[US/Eastern]");
5499
5500 let zdt1: Zoned = "2024-03-10T03:30[US/Eastern]".parse().unwrap();
5501 assert_eq!(zdt1.to_string(), "2024-03-10T03:30:00-04:00[US/Eastern]");
5502 let zdt2 = zdt1.with().hour(2).build().unwrap();
5503 assert_eq!(zdt2.to_string(), "2024-03-10T03:30:00-04:00[US/Eastern]");
5504
5505 // I originally thought that this was difference from Temporal. Namely,
5506 // I thought that Temporal ignored the disambiguation setting (and the
5507 // bad offset). But it doesn't. I was holding it wrong.
5508 //
5509 // See: https://github.com/tc39/proposal-temporal/issues/3078
5510 let zdt1: Zoned = "2024-03-10T01:30[US/Eastern]".parse().unwrap();
5511 assert_eq!(zdt1.to_string(), "2024-03-10T01:30:00-05:00[US/Eastern]");
5512 let zdt2 = zdt1
5513 .with()
5514 .offset(tz::offset(10))
5515 .hour(2)
5516 .disambiguation(Disambiguation::Earlier)
5517 .build()
5518 .unwrap();
5519 assert_eq!(zdt2.to_string(), "2024-03-10T01:30:00-05:00[US/Eastern]");
5520
5521 // This should also respect the disambiguation setting even without
5522 // explicitly specifying an invalid offset. This is becaue `02:30-05`
5523 // is regarded as invalid since `02:30` isn't a valid civil time on
5524 // this date in this time zone.
5525 let zdt1: Zoned = "2024-03-10T01:30[US/Eastern]".parse().unwrap();
5526 assert_eq!(zdt1.to_string(), "2024-03-10T01:30:00-05:00[US/Eastern]");
5527 let zdt2 = zdt1
5528 .with()
5529 .hour(2)
5530 .disambiguation(Disambiguation::Earlier)
5531 .build()
5532 .unwrap();
5533 assert_eq!(zdt2.to_string(), "2024-03-10T01:30:00-05:00[US/Eastern]");
5534 }
5535
5536 #[test]
5537 fn zoned_precision_loss() {
5538 if crate::tz::db().is_definitively_empty() {
5539 return;
5540 }
5541
5542 let zdt1: Zoned = "2025-01-25T19:32:21.783444592+01:00[Europe/Paris]"
5543 .parse()
5544 .unwrap();
5545 let span = 1.second();
5546 let zdt2 = &zdt1 + span;
5547 assert_eq!(
5548 zdt2.to_string(),
5549 "2025-01-25T19:32:22.783444592+01:00[Europe/Paris]"
5550 );
5551 assert_eq!(zdt1, &zdt2 - span, "should be reversible");
5552 }
5553}