jiff/
span.rs

1use core::{cmp::Ordering, time::Duration as UnsignedDuration};
2
3use crate::{
4    civil::{Date, DateTime, Time},
5    duration::{Duration, SDuration},
6    error::{err, Error, ErrorContext},
7    fmt::{friendly, temporal},
8    tz::TimeZone,
9    util::{
10        borrow::DumbCow,
11        escape,
12        rangeint::{ri64, ri8, RFrom, RInto, TryRFrom, TryRInto},
13        round::increment,
14        t::{self, Constant, NoUnits, NoUnits128, Sign, C},
15    },
16    RoundMode, SignedDuration, Timestamp, Zoned,
17};
18
19/// A macro helper, only used in tests, for comparing spans for equality.
20#[cfg(test)]
21macro_rules! span_eq {
22    ($span1:expr, $span2:expr $(,)?) => {{
23        assert_eq!($span1.fieldwise(), $span2.fieldwise());
24    }};
25    ($span1:expr, $span2:expr, $($tt:tt)*) => {{
26        assert_eq!($span1.fieldwise(), $span2.fieldwise(), $($tt)*);
27    }};
28}
29
30#[cfg(test)]
31pub(crate) use span_eq;
32
33/// A span of time represented via a mixture of calendar and clock units.
34///
35/// A span represents a duration of time in units of years, months, weeks,
36/// days, hours, minutes, seconds, milliseconds, microseconds and nanoseconds.
37/// Spans are used to as inputs to routines like
38/// [`Zoned::checked_add`] and [`Date::saturating_sub`],
39/// and are also outputs from routines like
40/// [`Timestamp::since`] and [`DateTime::until`].
41///
42/// # Range of spans
43///
44/// Except for nanoseconds, each unit can represent the full span of time
45/// expressible via any combination of datetime supported by Jiff. For example:
46///
47/// ```
48/// use jiff::{civil::{DateTime, DateTimeDifference}, ToSpan, Unit};
49///
50/// let options = DateTimeDifference::new(DateTime::MAX).largest(Unit::Year);
51/// assert_eq!(DateTime::MIN.until(options)?.get_years(), 19_998);
52///
53/// let options = options.largest(Unit::Day);
54/// assert_eq!(DateTime::MIN.until(options)?.get_days(), 7_304_483);
55///
56/// let options = options.largest(Unit::Microsecond);
57/// assert_eq!(
58///     DateTime::MIN.until(options)?.get_microseconds(),
59///     631_107_417_599_999_999i64,
60/// );
61///
62/// let options = options.largest(Unit::Nanosecond);
63/// // Span is too big, overflow!
64/// assert!(DateTime::MIN.until(options).is_err());
65///
66/// # Ok::<(), Box<dyn std::error::Error>>(())
67/// ```
68///
69/// # Building spans
70///
71/// A default or empty span corresponds to a duration of zero time:
72///
73/// ```
74/// use jiff::Span;
75///
76/// assert!(Span::new().is_zero());
77/// assert!(Span::default().is_zero());
78/// ```
79///
80/// Spans are `Copy` types that have mutator methods on them for creating new
81/// spans:
82///
83/// ```
84/// use jiff::Span;
85///
86/// let span = Span::new().days(5).hours(8).minutes(1);
87/// assert_eq!(span.to_string(), "P5DT8H1M");
88/// ```
89///
90/// But Jiff provides a [`ToSpan`] trait that defines extension methods on
91/// primitive signed integers to make span creation terser:
92///
93/// ```
94/// use jiff::ToSpan;
95///
96/// let span = 5.days().hours(8).minutes(1);
97/// assert_eq!(span.to_string(), "P5DT8H1M");
98/// // singular units on integers can be used too:
99/// let span = 1.day().hours(8).minutes(1);
100/// assert_eq!(span.to_string(), "P1DT8H1M");
101/// ```
102///
103/// # Negative spans
104///
105/// A span may be negative. All of these are equivalent:
106///
107/// ```
108/// use jiff::{Span, ToSpan};
109///
110/// let span = -Span::new().days(5);
111/// assert_eq!(span.to_string(), "-P5D");
112///
113/// let span = Span::new().days(5).negate();
114/// assert_eq!(span.to_string(), "-P5D");
115///
116/// let span = Span::new().days(-5);
117/// assert_eq!(span.to_string(), "-P5D");
118///
119/// let span = -Span::new().days(-5).negate();
120/// assert_eq!(span.to_string(), "-P5D");
121///
122/// let span = -5.days();
123/// assert_eq!(span.to_string(), "-P5D");
124///
125/// let span = (-5).days();
126/// assert_eq!(span.to_string(), "-P5D");
127///
128/// let span = -(5.days());
129/// assert_eq!(span.to_string(), "-P5D");
130/// ```
131///
132/// The sign of a span applies to the entire span. When a span is negative,
133/// then all of its units are negative:
134///
135/// ```
136/// use jiff::ToSpan;
137///
138/// let span = -5.days().hours(10).minutes(1);
139/// assert_eq!(span.get_days(), -5);
140/// assert_eq!(span.get_hours(), -10);
141/// assert_eq!(span.get_minutes(), -1);
142/// ```
143///
144/// And if any of a span's units are negative, then the entire span is regarded
145/// as negative:
146///
147/// ```
148/// use jiff::ToSpan;
149///
150/// // It's the same thing.
151/// let span = (-5).days().hours(-10).minutes(-1);
152/// assert_eq!(span.get_days(), -5);
153/// assert_eq!(span.get_hours(), -10);
154/// assert_eq!(span.get_minutes(), -1);
155///
156/// // Still the same. All negative.
157/// let span = 5.days().hours(-10).minutes(1);
158/// assert_eq!(span.get_days(), -5);
159/// assert_eq!(span.get_hours(), -10);
160/// assert_eq!(span.get_minutes(), -1);
161///
162/// // But this is not! The negation in front applies
163/// // to the entire span, which was already negative
164/// // by virtue of at least one of its units being
165/// // negative. So the negation operator in front turns
166/// // the span positive.
167/// let span = -5.days().hours(-10).minutes(-1);
168/// assert_eq!(span.get_days(), 5);
169/// assert_eq!(span.get_hours(), 10);
170/// assert_eq!(span.get_minutes(), 1);
171/// ```
172///
173/// You can also ask for the absolute value of a span:
174///
175/// ```
176/// use jiff::Span;
177///
178/// let span = Span::new().days(5).hours(10).minutes(1).negate().abs();
179/// assert_eq!(span.get_days(), 5);
180/// assert_eq!(span.get_hours(), 10);
181/// assert_eq!(span.get_minutes(), 1);
182/// ```
183///
184/// # Parsing and printing
185///
186/// The `Span` type provides convenient trait implementations of
187/// [`std::str::FromStr`] and [`std::fmt::Display`]:
188///
189/// ```
190/// use jiff::{Span, ToSpan};
191///
192/// let span: Span = "P2m10dT2h30m".parse()?;
193/// // By default, capital unit designator labels are used.
194/// // This can be changed with `jiff::fmt::temporal::SpanPrinter::lowercase`.
195/// assert_eq!(span.to_string(), "P2M10DT2H30M");
196///
197/// // Or use the "friendly" format by invoking the `Display` alternate:
198/// assert_eq!(format!("{span:#}"), "2mo 10d 2h 30m");
199///
200/// // Parsing automatically supports both the ISO 8601 and "friendly"
201/// // formats. Note that we use `Span::fieldwise` to create a `Span` that
202/// // compares based on each field. To compare based on total duration, use
203/// // `Span::compare` or `Span::total`.
204/// let span: Span = "2mo 10d 2h 30m".parse()?;
205/// assert_eq!(span, 2.months().days(10).hours(2).minutes(30).fieldwise());
206/// let span: Span = "2 months, 10 days, 2 hours, 30 minutes".parse()?;
207/// assert_eq!(span, 2.months().days(10).hours(2).minutes(30).fieldwise());
208///
209/// # Ok::<(), Box<dyn std::error::Error>>(())
210/// ```
211///
212/// The format supported is a variation (nearly a subset) of the duration
213/// format specified in [ISO 8601] _and_ a Jiff-specific "friendly" format.
214/// Here are more examples:
215///
216/// ```
217/// use jiff::{Span, ToSpan};
218///
219/// let spans = [
220///     // ISO 8601
221///     ("P40D", 40.days()),
222///     ("P1y1d", 1.year().days(1)),
223///     ("P3dT4h59m", 3.days().hours(4).minutes(59)),
224///     ("PT2H30M", 2.hours().minutes(30)),
225///     ("P1m", 1.month()),
226///     ("P1w", 1.week()),
227///     ("P1w4d", 1.week().days(4)),
228///     ("PT1m", 1.minute()),
229///     ("PT0.0021s", 2.milliseconds().microseconds(100)),
230///     ("PT0s", 0.seconds()),
231///     ("P0d", 0.seconds()),
232///     (
233///         "P1y1m1dT1h1m1.1s",
234///         1.year().months(1).days(1).hours(1).minutes(1).seconds(1).milliseconds(100),
235///     ),
236///     // Jiff's "friendly" format
237///     ("40d", 40.days()),
238///     ("40 days", 40.days()),
239///     ("1y1d", 1.year().days(1)),
240///     ("1yr 1d", 1.year().days(1)),
241///     ("3d4h59m", 3.days().hours(4).minutes(59)),
242///     ("3 days, 4 hours, 59 minutes", 3.days().hours(4).minutes(59)),
243///     ("3d 4h 59m", 3.days().hours(4).minutes(59)),
244///     ("2h30m", 2.hours().minutes(30)),
245///     ("2h 30m", 2.hours().minutes(30)),
246///     ("1mo", 1.month()),
247///     ("1w", 1.week()),
248///     ("1 week", 1.week()),
249///     ("1w4d", 1.week().days(4)),
250///     ("1 wk 4 days", 1.week().days(4)),
251///     ("1m", 1.minute()),
252///     ("0.0021s", 2.milliseconds().microseconds(100)),
253///     ("0s", 0.seconds()),
254///     ("0d", 0.seconds()),
255///     ("0 days", 0.seconds()),
256///     (
257///         "1y1mo1d1h1m1.1s",
258///         1.year().months(1).days(1).hours(1).minutes(1).seconds(1).milliseconds(100),
259///     ),
260///     (
261///         "1yr 1mo 1day 1hr 1min 1.1sec",
262///         1.year().months(1).days(1).hours(1).minutes(1).seconds(1).milliseconds(100),
263///     ),
264///     (
265///         "1 year, 1 month, 1 day, 1 hour, 1 minute 1.1 seconds",
266///         1.year().months(1).days(1).hours(1).minutes(1).seconds(1).milliseconds(100),
267///     ),
268///     (
269///         "1 year, 1 month, 1 day, 01:01:01.1",
270///         1.year().months(1).days(1).hours(1).minutes(1).seconds(1).milliseconds(100),
271///     ),
272/// ];
273/// for (string, span) in spans {
274///     let parsed: Span = string.parse()?;
275///     assert_eq!(
276///         span.fieldwise(),
277///         parsed.fieldwise(),
278///         "result of parsing {string:?}",
279///     );
280/// }
281///
282/// # Ok::<(), Box<dyn std::error::Error>>(())
283/// ```
284///
285/// For more details, see the [`fmt::temporal`](temporal) and
286/// [`fmt::friendly`](friendly) modules.
287///
288/// [ISO 8601]: https://www.iso.org/iso-8601-date-and-time-format.html
289///
290/// # Comparisons
291///
292/// A `Span` does not implement the `PartialEq` or `Eq` traits. These traits
293/// were implemented in an earlier version of Jiff, but they made it too
294/// easy to introduce bugs. For example, `120.minutes()` and `2.hours()`
295/// always correspond to the same total duration, but they have different
296/// representations in memory and so didn't compare equivalent.
297///
298/// The reason why the `PartialEq` and `Eq` trait implementations do not do
299/// comparisons with total duration is because it is fundamentally impossible
300/// to do such comparisons without a reference date in all cases.
301///
302/// However, it is undeniably occasionally useful to do comparisons based
303/// on the component fields, so long as such use cases can tolerate two
304/// different spans comparing unequal even when their total durations are
305/// equivalent. For example, many of the tests in Jiff (including the tests in
306/// the documentation) work by comparing a `Span` to an expected result. This
307/// is a good demonstration of when fieldwise comparisons are appropriate.
308///
309/// To do fieldwise comparisons with a span, use the [`Span::fieldwise`]
310/// method. This method creates a [`SpanFieldwise`], which is just a `Span`
311/// that implements `PartialEq` and `Eq` in a fieldwise manner. In other words,
312/// it's a speed bump to ensure this is the kind of comparison you actually
313/// want. For example:
314///
315/// ```
316/// use jiff::ToSpan;
317///
318/// assert_ne!(1.hour().fieldwise(), 60.minutes().fieldwise());
319/// // These also work since you only need one fieldwise span to do a compare:
320/// assert_ne!(1.hour(), 60.minutes().fieldwise());
321/// assert_ne!(1.hour().fieldwise(), 60.minutes());
322/// ```
323///
324/// This is because doing true comparisons requires arithmetic and a relative
325/// datetime in the general case, and which can fail due to overflow. This
326/// operation is provided via [`Span::compare`]:
327///
328/// ```
329/// use jiff::{civil::date, ToSpan};
330///
331/// // This doesn't need a reference date since it's only using time units.
332/// assert_eq!(1.hour().compare(60.minutes())?, std::cmp::Ordering::Equal);
333/// // But if you have calendar units, then you need a
334/// // reference date at minimum:
335/// assert!(1.month().compare(30.days()).is_err());
336/// assert_eq!(
337///     1.month().compare((30.days(), date(2025, 6, 1)))?,
338///     std::cmp::Ordering::Equal,
339/// );
340/// // A month can be a differing number of days!
341/// assert_eq!(
342///     1.month().compare((30.days(), date(2025, 7, 1)))?,
343///     std::cmp::Ordering::Greater,
344/// );
345///
346/// # Ok::<(), Box<dyn std::error::Error>>(())
347/// ```
348///
349/// # Arithmetic
350///
351/// Spans can be added or subtracted via [`Span::checked_add`] and
352/// [`Span::checked_sub`]:
353///
354/// ```
355/// use jiff::{Span, ToSpan};
356///
357/// let span1 = 2.hours().minutes(20);
358/// let span2: Span = "PT89400s".parse()?;
359/// assert_eq!(span1.checked_add(span2)?, 27.hours().minutes(10).fieldwise());
360///
361/// # Ok::<(), Box<dyn std::error::Error>>(())
362/// ```
363///
364/// When your spans involve calendar units, a relative datetime must be
365/// provided. (Because, for example, 1 month from March 1 is 31 days, but
366/// 1 month from April 1 is 30 days.)
367///
368/// ```
369/// use jiff::{civil::date, Span, ToSpan};
370///
371/// let span1 = 2.years().months(6).days(20);
372/// let span2 = 400.days();
373/// assert_eq!(
374///     span1.checked_add((span2, date(2023, 1, 1)))?,
375///     3.years().months(7).days(24).fieldwise(),
376/// );
377/// // The span changes when a leap year isn't included!
378/// assert_eq!(
379///     span1.checked_add((span2, date(2025, 1, 1)))?,
380///     3.years().months(7).days(23).fieldwise(),
381/// );
382///
383/// # Ok::<(), Box<dyn std::error::Error>>(())
384/// ```
385///
386/// # Rounding and balancing
387///
388/// Unlike datetimes, multiple distinct `Span` values can actually correspond
389/// to the same duration of time. For example, all of the following correspond
390/// to the same duration:
391///
392/// * 2 hours, 30 minutes
393/// * 150 minutes
394/// * 1 hour, 90 minutes
395///
396/// The first is said to be balanced. That is, its biggest non-zero unit cannot
397/// be expressed in an integer number of units bigger than hours. But the
398/// second is unbalanced because 150 minutes can be split up into hours and
399/// minutes. We call this sort of span a "top-heavy" unbalanced span. The third
400/// span is also unbalanced, but it's "bottom-heavy" and rarely used. Jiff
401/// will generally only produce spans of the first two types. In particular,
402/// most `Span` producing APIs accept a "largest" [`Unit`] parameter, and the
403/// result can be said to be a span "balanced up to the largest unit provided."
404///
405/// Balanced and unbalanced spans can be switched between as needed via
406/// the [`Span::round`] API by providing a rounding configuration with
407/// [`SpanRound::largest`]` set:
408///
409/// ```
410/// use jiff::{SpanRound, ToSpan, Unit};
411///
412/// let span = 2.hours().minutes(30);
413/// let unbalanced = span.round(SpanRound::new().largest(Unit::Minute))?;
414/// assert_eq!(unbalanced, 150.minutes().fieldwise());
415/// let balanced = unbalanced.round(SpanRound::new().largest(Unit::Hour))?;
416/// assert_eq!(balanced, 2.hours().minutes(30).fieldwise());
417///
418/// # Ok::<(), Box<dyn std::error::Error>>(())
419/// ```
420///
421/// Balancing can also be done as part of computing spans from two datetimes:
422///
423/// ```
424/// use jiff::{civil::date, ToSpan, Unit};
425///
426/// let zdt1 = date(2024, 7, 7).at(15, 23, 0, 0).in_tz("America/New_York")?;
427/// let zdt2 = date(2024, 11, 5).at(8, 0, 0, 0).in_tz("America/New_York")?;
428///
429/// // To make arithmetic reversible, the default largest unit for spans of
430/// // time computed from zoned datetimes is hours:
431/// assert_eq!(zdt1.until(&zdt2)?, 2_897.hour().minutes(37).fieldwise());
432/// // But we can ask for the span to be balanced up to years:
433/// assert_eq!(
434///     zdt1.until((Unit::Year, &zdt2))?,
435///     3.months().days(28).hours(16).minutes(37).fieldwise(),
436/// );
437///
438/// # Ok::<(), Box<dyn std::error::Error>>(())
439/// ```
440///
441/// While the [`Span::round`] API does balancing, it also, of course, does
442/// rounding as well. Rounding occurs when the smallest unit is set to
443/// something bigger than [`Unit::Nanosecond`]:
444///
445/// ```
446/// use jiff::{ToSpan, Unit};
447///
448/// let span = 2.hours().minutes(30);
449/// assert_eq!(span.round(Unit::Hour)?, 3.hours().fieldwise());
450///
451/// # Ok::<(), Box<dyn std::error::Error>>(())
452/// ```
453///
454/// When rounding spans with calendar units (years, months or weeks), then a
455/// relative datetime is required:
456///
457/// ```
458/// use jiff::{civil::date, SpanRound, ToSpan, Unit};
459///
460/// let span = 10.years().months(11);
461/// let options = SpanRound::new()
462///     .smallest(Unit::Year)
463///     .relative(date(2024, 1, 1));
464/// assert_eq!(span.round(options)?, 11.years().fieldwise());
465///
466/// # Ok::<(), Box<dyn std::error::Error>>(())
467/// ```
468///
469/// # Days are not always 24 hours!
470///
471/// That is, a `Span` is made up of uniform and non-uniform units.
472///
473/// A uniform unit is a unit whose elapsed duration is always the same.
474/// A non-uniform unit is a unit whose elapsed duration is not always the same.
475/// There are two things that can impact the length of a non-uniform unit:
476/// the calendar date and the time zone.
477///
478/// Years and months are always considered non-uniform units. For example,
479/// 1 month from `2024-04-01` is 30 days, while 1 month from `2024-05-01` is
480/// 31 days. Similarly for years because of leap years.
481///
482/// Hours, minutes, seconds, milliseconds, microseconds and nanoseconds are
483/// always considered uniform units.
484///
485/// Days are only considered non-uniform when in the presence of a zone aware
486/// datetime. A day can be more or less than 24 hours, and it can be balanced
487/// up and down, but only when a relative zoned datetime is given. This
488/// typically happens because of DST (daylight saving time), but can also occur
489/// because of other time zone transitions too.
490///
491/// ```
492/// use jiff::{civil::date, SpanRound, ToSpan, Unit};
493///
494/// // 2024-03-10 in New York was 23 hours long,
495/// // because of a jump to DST at 2am.
496/// let zdt = date(2024, 3, 9).at(21, 0, 0, 0).in_tz("America/New_York")?;
497/// // Goes from days to hours:
498/// assert_eq!(
499///     1.day().round(SpanRound::new().largest(Unit::Hour).relative(&zdt))?,
500///     23.hours().fieldwise(),
501/// );
502/// // Goes from hours to days:
503/// assert_eq!(
504///     23.hours().round(SpanRound::new().largest(Unit::Day).relative(&zdt))?,
505///     1.day().fieldwise(),
506/// );
507/// // 24 hours is more than 1 day starting at this time:
508/// assert_eq!(
509///     24.hours().round(SpanRound::new().largest(Unit::Day).relative(&zdt))?,
510///     1.day().hours(1).fieldwise(),
511/// );
512///
513/// # Ok::<(), Box<dyn std::error::Error>>(())
514/// ```
515///
516/// And similarly, days can be longer than 24 hours:
517///
518/// ```
519/// use jiff::{civil::date, SpanRound, ToSpan, Unit};
520///
521/// // 2024-11-03 in New York was 25 hours long,
522/// // because of a repetition of the 1 o'clock AM hour.
523/// let zdt = date(2024, 11, 2).at(21, 0, 0, 0).in_tz("America/New_York")?;
524/// // Goes from days to hours:
525/// assert_eq!(
526///     1.day().round(SpanRound::new().largest(Unit::Hour).relative(&zdt))?,
527///     25.hours().fieldwise(),
528/// );
529/// // Goes from hours to days:
530/// assert_eq!(
531///     25.hours().round(SpanRound::new().largest(Unit::Day).relative(&zdt))?,
532///     1.day().fieldwise(),
533/// );
534/// // 24 hours is less than 1 day starting at this time,
535/// // so it stays in units of hours even though we ask
536/// // for days (because 24 isn't enough hours to make
537/// // 1 day):
538/// assert_eq!(
539///     24.hours().round(SpanRound::new().largest(Unit::Day).relative(&zdt))?,
540///     24.hours().fieldwise(),
541/// );
542///
543/// # Ok::<(), Box<dyn std::error::Error>>(())
544/// ```
545///
546/// The APIs on `Span` will otherwise treat days as non-uniform unless a
547/// relative civil date is given, or there is an explicit opt-in to invariant
548/// 24-hour days. For example:
549///
550/// ```
551/// use jiff::{civil, SpanRelativeTo, ToSpan, Unit};
552///
553/// let span = 1.day();
554///
555/// // An error because days aren't always 24 hours:
556/// assert_eq!(
557///     span.total(Unit::Hour).unwrap_err().to_string(),
558///     "using unit 'day' in a span or configuration requires that either \
559///      a relative reference time be given or \
560///      `SpanRelativeTo::days_are_24_hours()` is used to indicate \
561///      invariant 24-hour days, but neither were provided",
562/// );
563/// // Opt into invariant 24 hour days without a relative date:
564/// let marker = SpanRelativeTo::days_are_24_hours();
565/// let hours = span.total((Unit::Hour, marker))?;
566/// // Or use a relative civil date, and all days are 24 hours:
567/// let date = civil::date(2020, 1, 1);
568/// let hours = span.total((Unit::Hour, date))?;
569/// assert_eq!(hours, 24.0);
570///
571/// # Ok::<(), Box<dyn std::error::Error>>(())
572/// ```
573///
574/// In Jiff, all weeks are 7 days. And generally speaking, weeks only appear in
575/// a `Span` if they were explicitly put there by the caller or if they were
576/// explicitly requested by the caller in an API. For example:
577///
578/// ```
579/// use jiff::{civil::date, ToSpan, Unit};
580///
581/// let dt1 = date(2024, 1, 1).at(0, 0, 0, 0);
582/// let dt2 = date(2024, 7, 16).at(0, 0, 0, 0);
583/// // Default units go up to days.
584/// assert_eq!(dt1.until(dt2)?, 197.days().fieldwise());
585/// // No weeks, even though we requested up to year.
586/// assert_eq!(dt1.until((Unit::Year, dt2))?, 6.months().days(15).fieldwise());
587/// // We get weeks only when we ask for them.
588/// assert_eq!(dt1.until((Unit::Week, dt2))?, 28.weeks().days(1).fieldwise());
589///
590/// # Ok::<(), Box<dyn std::error::Error>>(())
591/// ```
592///
593/// # Integration with [`std::time::Duration`] and [`SignedDuration`]
594///
595/// While Jiff primarily uses a `Span` for doing arithmetic on datetimes,
596/// one can convert between a `Span` and a [`std::time::Duration`] or a
597/// [`SignedDuration`]. The main difference between them is that a `Span`
598/// always keeps tracks of its individual units, and a `Span` can represent
599/// non-uniform units like months. In contrast, `Duration` and `SignedDuration`
600/// are always an exact elapsed amount of time. They don't distinguish between
601/// `120 seconds` and `2 minutes`. And they can't represent the concept of
602/// "months" because a month doesn't have a single fixed amount of time.
603///
604/// However, an exact duration is still useful in certain contexts. Beyond
605/// that, it serves as an interoperability point due to the presence of an
606/// unsigned exact duration type in the standard library. Because of that,
607/// Jiff provides `TryFrom` trait implementations for converting to and from a
608/// `std::time::Duration` (and, of course, a `SignedDuration`). For example, to
609/// convert from a `std::time::Duration` to a `Span`:
610///
611/// ```
612/// use std::time::Duration;
613///
614/// use jiff::{Span, ToSpan};
615///
616/// let duration = Duration::new(86_400, 123_456_789);
617/// let span = Span::try_from(duration)?;
618/// // A duration-to-span conversion always results in a span with
619/// // non-zero units no bigger than seconds.
620/// assert_eq!(
621///     span.fieldwise(),
622///     86_400.seconds().milliseconds(123).microseconds(456).nanoseconds(789),
623/// );
624///
625/// // Note that the conversion is fallible! For example:
626/// assert!(Span::try_from(Duration::from_secs(u64::MAX)).is_err());
627/// // At present, a Jiff `Span` can only represent a range of time equal to
628/// // the range of time expressible via minimum and maximum Jiff timestamps.
629/// // Which is roughly -9999-01-01 to 9999-12-31, or ~20,000 years.
630/// assert!(Span::try_from(Duration::from_secs(999_999_999_999)).is_err());
631///
632/// # Ok::<(), Box<dyn std::error::Error>>(())
633/// ```
634///
635/// And to convert from a `Span` to a `std::time::Duration`:
636///
637/// ```
638/// use std::time::Duration;
639///
640/// use jiff::{Span, ToSpan};
641///
642/// let span = 86_400.seconds()
643///     .milliseconds(123)
644///     .microseconds(456)
645///     .nanoseconds(789);
646/// let duration = Duration::try_from(span)?;
647/// assert_eq!(duration, Duration::new(86_400, 123_456_789));
648///
649/// # Ok::<(), Box<dyn std::error::Error>>(())
650/// ```
651///
652/// Note that an error will occur when converting a `Span` to a
653/// `std::time::Duration` using the `TryFrom` trait implementation with units
654/// bigger than hours:
655///
656/// ```
657/// use std::time::Duration;
658///
659/// use jiff::ToSpan;
660///
661/// let span = 2.days().hours(10);
662/// assert_eq!(
663///     Duration::try_from(span).unwrap_err().to_string(),
664///     "failed to convert span to duration without relative datetime \
665///      (must use `Span::to_duration` instead): using unit 'day' in a \
666///      span or configuration requires that either a relative reference \
667///      time be given or `SpanRelativeTo::days_are_24_hours()` is used \
668///      to indicate invariant 24-hour days, but neither were provided",
669/// );
670///
671/// # Ok::<(), Box<dyn std::error::Error>>(())
672/// ```
673///
674/// Similar code can be written for `SignedDuration` as well.
675///
676/// If you need to convert such spans, then as the error suggests, you'll need
677/// to use [`Span::to_duration`] with a relative date.
678///
679/// And note that since a `Span` is signed and a `std::time::Duration` is unsigned,
680/// converting a negative `Span` to `std::time::Duration` will always fail. One can use
681/// [`Span::signum`] to get the sign of the span and [`Span::abs`] to make the
682/// span positive before converting it to a `Duration`:
683///
684/// ```
685/// use std::time::Duration;
686///
687/// use jiff::{Span, ToSpan};
688///
689/// let span = -86_400.seconds().nanoseconds(1);
690/// let (sign, duration) = (span.signum(), Duration::try_from(span.abs())?);
691/// assert_eq!((sign, duration), (-1, Duration::new(86_400, 1)));
692///
693/// # Ok::<(), Box<dyn std::error::Error>>(())
694/// ```
695///
696/// Or, consider using Jiff's own [`SignedDuration`] instead:
697///
698/// ```
699/// # // See: https://github.com/rust-lang/rust/pull/121364
700/// # #![allow(unknown_lints, ambiguous_negative_literals)]
701/// use jiff::{SignedDuration, Span, ToSpan};
702///
703/// let span = -86_400.seconds().nanoseconds(1);
704/// let duration = SignedDuration::try_from(span)?;
705/// assert_eq!(duration, SignedDuration::new(-86_400, -1));
706///
707/// # Ok::<(), Box<dyn std::error::Error>>(())
708/// ```
709#[derive(Clone, Copy)]
710pub struct Span {
711    sign: Sign,
712    units: UnitSet,
713    years: t::SpanYears,
714    months: t::SpanMonths,
715    weeks: t::SpanWeeks,
716    days: t::SpanDays,
717    hours: t::SpanHours,
718    minutes: t::SpanMinutes,
719    seconds: t::SpanSeconds,
720    milliseconds: t::SpanMilliseconds,
721    microseconds: t::SpanMicroseconds,
722    nanoseconds: t::SpanNanoseconds,
723}
724
725/// Infallible routines for setting units on a `Span`.
726///
727/// These are useful when the units are determined by the programmer or when
728/// they have been validated elsewhere. In general, use these routines when
729/// constructing an invalid `Span` should be considered a bug in the program.
730impl Span {
731    /// Creates a new span representing a zero duration. That is, a duration
732    /// in which no time has passed.
733    pub fn new() -> Span {
734        Span::default()
735    }
736
737    /// Set the number of years on this span. The value may be negative.
738    ///
739    /// The fallible version of this method is [`Span::try_years`].
740    ///
741    /// # Panics
742    ///
743    /// This panics when the number of years is too small or too big.
744    /// The minimum value is `-19,998`.
745    /// The maximum value is `19,998`.
746    #[inline]
747    pub fn years<I: Into<i64>>(self, years: I) -> Span {
748        self.try_years(years).expect("value for years is out of bounds")
749    }
750
751    /// Set the number of months on this span. The value may be negative.
752    ///
753    /// The fallible version of this method is [`Span::try_months`].
754    ///
755    /// # Panics
756    ///
757    /// This panics when the number of months is too small or too big.
758    /// The minimum value is `-239,976`.
759    /// The maximum value is `239,976`.
760    #[inline]
761    pub fn months<I: Into<i64>>(self, months: I) -> Span {
762        self.try_months(months).expect("value for months is out of bounds")
763    }
764
765    /// Set the number of weeks on this span. The value may be negative.
766    ///
767    /// The fallible version of this method is [`Span::try_weeks`].
768    ///
769    /// # Panics
770    ///
771    /// This panics when the number of weeks is too small or too big.
772    /// The minimum value is `-1,043,497`.
773    /// The maximum value is `1_043_497`.
774    #[inline]
775    pub fn weeks<I: Into<i64>>(self, weeks: I) -> Span {
776        self.try_weeks(weeks).expect("value for weeks is out of bounds")
777    }
778
779    /// Set the number of days on this span. The value may be negative.
780    ///
781    /// The fallible version of this method is [`Span::try_days`].
782    ///
783    /// # Panics
784    ///
785    /// This panics when the number of days is too small or too big.
786    /// The minimum value is `-7,304,484`.
787    /// The maximum value is `7,304,484`.
788    #[inline]
789    pub fn days<I: Into<i64>>(self, days: I) -> Span {
790        self.try_days(days).expect("value for days is out of bounds")
791    }
792
793    /// Set the number of hours on this span. The value may be negative.
794    ///
795    /// The fallible version of this method is [`Span::try_hours`].
796    ///
797    /// # Panics
798    ///
799    /// This panics when the number of hours is too small or too big.
800    /// The minimum value is `-175,307,616`.
801    /// The maximum value is `175,307,616`.
802    #[inline]
803    pub fn hours<I: Into<i64>>(self, hours: I) -> Span {
804        self.try_hours(hours).expect("value for hours is out of bounds")
805    }
806
807    /// Set the number of minutes on this span. The value may be negative.
808    ///
809    /// The fallible version of this method is [`Span::try_minutes`].
810    ///
811    /// # Panics
812    ///
813    /// This panics when the number of minutes is too small or too big.
814    /// The minimum value is `-10,518,456,960`.
815    /// The maximum value is `10,518,456,960`.
816    #[inline]
817    pub fn minutes<I: Into<i64>>(self, minutes: I) -> Span {
818        self.try_minutes(minutes).expect("value for minutes is out of bounds")
819    }
820
821    /// Set the number of seconds on this span. The value may be negative.
822    ///
823    /// The fallible version of this method is [`Span::try_seconds`].
824    ///
825    /// # Panics
826    ///
827    /// This panics when the number of seconds is too small or too big.
828    /// The minimum value is `-631,107,417,600`.
829    /// The maximum value is `631,107,417,600`.
830    #[inline]
831    pub fn seconds<I: Into<i64>>(self, seconds: I) -> Span {
832        self.try_seconds(seconds).expect("value for seconds is out of bounds")
833    }
834
835    /// Set the number of milliseconds on this span. The value may be negative.
836    ///
837    /// The fallible version of this method is [`Span::try_milliseconds`].
838    ///
839    /// # Panics
840    ///
841    /// This panics when the number of milliseconds is too small or too big.
842    /// The minimum value is `-631,107,417,600,000`.
843    /// The maximum value is `631,107,417,600,000`.
844    #[inline]
845    pub fn milliseconds<I: Into<i64>>(self, milliseconds: I) -> Span {
846        self.try_milliseconds(milliseconds)
847            .expect("value for milliseconds is out of bounds")
848    }
849
850    /// Set the number of microseconds on this span. The value may be negative.
851    ///
852    /// The fallible version of this method is [`Span::try_microseconds`].
853    ///
854    /// # Panics
855    ///
856    /// This panics when the number of microseconds is too small or too big.
857    /// The minimum value is `-631,107,417,600,000,000`.
858    /// The maximum value is `631,107,417,600,000,000`.
859    #[inline]
860    pub fn microseconds<I: Into<i64>>(self, microseconds: I) -> Span {
861        self.try_microseconds(microseconds)
862            .expect("value for microseconds is out of bounds")
863    }
864
865    /// Set the number of nanoseconds on this span. The value may be negative.
866    ///
867    /// Note that unlike all other units, a 64-bit integer number of
868    /// nanoseconds is not big enough to represent all possible spans between
869    /// all possible datetimes supported by Jiff. This means, for example, that
870    /// computing a span between two datetimes that are far enough apart _and_
871    /// requesting a largest unit of [`Unit::Nanosecond`], might return an
872    /// error due to lack of precision.
873    ///
874    /// The fallible version of this method is [`Span::try_nanoseconds`].
875    ///
876    /// # Panics
877    ///
878    /// This panics when the number of nanoseconds is too small or too big.
879    /// The minimum value is `-9,223,372,036,854,775,807`.
880    /// The maximum value is `9,223,372,036,854,775,807`.
881    #[inline]
882    pub fn nanoseconds<I: Into<i64>>(self, nanoseconds: I) -> Span {
883        self.try_nanoseconds(nanoseconds)
884            .expect("value for nanoseconds is out of bounds")
885    }
886}
887
888/// Fallible methods for setting units on a `Span`.
889///
890/// These methods are useful when the span is made up of user provided values
891/// that may not be in range.
892impl Span {
893    /// Set the number of years on this span. The value may be negative.
894    ///
895    /// The panicking version of this method is [`Span::years`].
896    ///
897    /// # Errors
898    ///
899    /// This returns an error when the number of years is too small or too big.
900    /// The minimum value is `-19,998`.
901    /// The maximum value is `19,998`.
902    #[inline]
903    pub fn try_years<I: Into<i64>>(self, years: I) -> Result<Span, Error> {
904        let years = t::SpanYears::try_new("years", years)?;
905        Ok(self.years_ranged(years))
906    }
907
908    /// Set the number of months on this span. The value may be negative.
909    ///
910    /// The panicking version of this method is [`Span::months`].
911    ///
912    /// # Errors
913    ///
914    /// This returns an error when the number of months is too small or too big.
915    /// The minimum value is `-239,976`.
916    /// The maximum value is `239,976`.
917    #[inline]
918    pub fn try_months<I: Into<i64>>(self, months: I) -> Result<Span, Error> {
919        type Range = ri64<{ t::SpanMonths::MIN }, { t::SpanMonths::MAX }>;
920        let months = Range::try_new("months", months)?;
921        Ok(self.months_ranged(months))
922    }
923
924    /// Set the number of weeks on this span. The value may be negative.
925    ///
926    /// The panicking version of this method is [`Span::weeks`].
927    ///
928    /// # Errors
929    ///
930    /// This returns an error when the number of weeks is too small or too big.
931    /// The minimum value is `-1,043,497`.
932    /// The maximum value is `1_043_497`.
933    #[inline]
934    pub fn try_weeks<I: Into<i64>>(self, weeks: I) -> Result<Span, Error> {
935        type Range = ri64<{ t::SpanWeeks::MIN }, { t::SpanWeeks::MAX }>;
936        let weeks = Range::try_new("weeks", weeks)?;
937        Ok(self.weeks_ranged(weeks))
938    }
939
940    /// Set the number of days on this span. The value may be negative.
941    ///
942    /// The panicking version of this method is [`Span::days`].
943    ///
944    /// # Errors
945    ///
946    /// This returns an error when the number of days is too small or too big.
947    /// The minimum value is `-7,304,484`.
948    /// The maximum value is `7,304,484`.
949    #[inline]
950    pub fn try_days<I: Into<i64>>(self, days: I) -> Result<Span, Error> {
951        type Range = ri64<{ t::SpanDays::MIN }, { t::SpanDays::MAX }>;
952        let days = Range::try_new("days", days)?;
953        Ok(self.days_ranged(days))
954    }
955
956    /// Set the number of hours on this span. The value may be negative.
957    ///
958    /// The panicking version of this method is [`Span::hours`].
959    ///
960    /// # Errors
961    ///
962    /// This returns an error when the number of hours is too small or too big.
963    /// The minimum value is `-175,307,616`.
964    /// The maximum value is `175,307,616`.
965    #[inline]
966    pub fn try_hours<I: Into<i64>>(self, hours: I) -> Result<Span, Error> {
967        type Range = ri64<{ t::SpanHours::MIN }, { t::SpanHours::MAX }>;
968        let hours = Range::try_new("hours", hours)?;
969        Ok(self.hours_ranged(hours))
970    }
971
972    /// Set the number of minutes on this span. The value may be negative.
973    ///
974    /// The panicking version of this method is [`Span::minutes`].
975    ///
976    /// # Errors
977    ///
978    /// This returns an error when the number of minutes is too small or too big.
979    /// The minimum value is `-10,518,456,960`.
980    /// The maximum value is `10,518,456,960`.
981    #[inline]
982    pub fn try_minutes<I: Into<i64>>(self, minutes: I) -> Result<Span, Error> {
983        type Range = ri64<{ t::SpanMinutes::MIN }, { t::SpanMinutes::MAX }>;
984        let minutes = Range::try_new("minutes", minutes.into())?;
985        Ok(self.minutes_ranged(minutes))
986    }
987
988    /// Set the number of seconds on this span. The value may be negative.
989    ///
990    /// The panicking version of this method is [`Span::seconds`].
991    ///
992    /// # Errors
993    ///
994    /// This returns an error when the number of seconds is too small or too big.
995    /// The minimum value is `-631,107,417,600`.
996    /// The maximum value is `631,107,417,600`.
997    #[inline]
998    pub fn try_seconds<I: Into<i64>>(self, seconds: I) -> Result<Span, Error> {
999        type Range = ri64<{ t::SpanSeconds::MIN }, { t::SpanSeconds::MAX }>;
1000        let seconds = Range::try_new("seconds", seconds.into())?;
1001        Ok(self.seconds_ranged(seconds))
1002    }
1003
1004    /// Set the number of milliseconds on this span. The value may be negative.
1005    ///
1006    /// The panicking version of this method is [`Span::milliseconds`].
1007    ///
1008    /// # Errors
1009    ///
1010    /// This returns an error when the number of milliseconds is too small or
1011    /// too big.
1012    /// The minimum value is `-631,107,417,600,000`.
1013    /// The maximum value is `631,107,417,600,000`.
1014    #[inline]
1015    pub fn try_milliseconds<I: Into<i64>>(
1016        self,
1017        milliseconds: I,
1018    ) -> Result<Span, Error> {
1019        type Range =
1020            ri64<{ t::SpanMilliseconds::MIN }, { t::SpanMilliseconds::MAX }>;
1021        let milliseconds =
1022            Range::try_new("milliseconds", milliseconds.into())?;
1023        Ok(self.milliseconds_ranged(milliseconds))
1024    }
1025
1026    /// Set the number of microseconds on this span. The value may be negative.
1027    ///
1028    /// The panicking version of this method is [`Span::microseconds`].
1029    ///
1030    /// # Errors
1031    ///
1032    /// This returns an error when the number of microseconds is too small or
1033    /// too big.
1034    /// The minimum value is `-631,107,417,600,000,000`.
1035    /// The maximum value is `631,107,417,600,000,000`.
1036    #[inline]
1037    pub fn try_microseconds<I: Into<i64>>(
1038        self,
1039        microseconds: I,
1040    ) -> Result<Span, Error> {
1041        type Range =
1042            ri64<{ t::SpanMicroseconds::MIN }, { t::SpanMicroseconds::MAX }>;
1043        let microseconds =
1044            Range::try_new("microseconds", microseconds.into())?;
1045        Ok(self.microseconds_ranged(microseconds))
1046    }
1047
1048    /// Set the number of nanoseconds on this span. The value may be negative.
1049    ///
1050    /// Note that unlike all other units, a 64-bit integer number of
1051    /// nanoseconds is not big enough to represent all possible spans between
1052    /// all possible datetimes supported by Jiff. This means, for example, that
1053    /// computing a span between two datetimes that are far enough apart _and_
1054    /// requesting a largest unit of [`Unit::Nanosecond`], might return an
1055    /// error due to lack of precision.
1056    ///
1057    /// The panicking version of this method is [`Span::nanoseconds`].
1058    ///
1059    /// # Errors
1060    ///
1061    /// This returns an error when the number of nanoseconds is too small or
1062    /// too big.
1063    /// The minimum value is `-9,223,372,036,854,775,807`.
1064    /// The maximum value is `9,223,372,036,854,775,807`.
1065    #[inline]
1066    pub fn try_nanoseconds<I: Into<i64>>(
1067        self,
1068        nanoseconds: I,
1069    ) -> Result<Span, Error> {
1070        type Range =
1071            ri64<{ t::SpanNanoseconds::MIN }, { t::SpanNanoseconds::MAX }>;
1072        let nanoseconds = Range::try_new("nanoseconds", nanoseconds.into())?;
1073        Ok(self.nanoseconds_ranged(nanoseconds))
1074    }
1075}
1076
1077/// Routines for accessing the individual units in a `Span`.
1078impl Span {
1079    /// Returns the number of year units in this span.
1080    ///
1081    /// Note that this is not the same as the total number of years in the
1082    /// span. To get that, you'll need to use either [`Span::round`] or
1083    /// [`Span::total`].
1084    ///
1085    /// # Example
1086    ///
1087    /// ```
1088    /// use jiff::{civil::date, ToSpan, Unit};
1089    ///
1090    /// let span = 3.years().months(24);
1091    /// assert_eq!(3, span.get_years());
1092    /// assert_eq!(5.0, span.total((Unit::Year, date(2024, 1, 1)))?);
1093    ///
1094    /// # Ok::<(), Box<dyn std::error::Error>>(())
1095    /// ```
1096    #[inline]
1097    pub fn get_years(&self) -> i16 {
1098        self.get_years_ranged().get()
1099    }
1100
1101    /// Returns the number of month units in this span.
1102    ///
1103    /// Note that this is not the same as the total number of months in the
1104    /// span. To get that, you'll need to use either [`Span::round`] or
1105    /// [`Span::total`].
1106    ///
1107    /// # Example
1108    ///
1109    /// ```
1110    /// use jiff::{civil::date, ToSpan, Unit};
1111    ///
1112    /// let span = 7.months().days(59);
1113    /// assert_eq!(7, span.get_months());
1114    /// assert_eq!(9.0, span.total((Unit::Month, date(2022, 6, 1)))?);
1115    ///
1116    /// # Ok::<(), Box<dyn std::error::Error>>(())
1117    /// ```
1118    #[inline]
1119    pub fn get_months(&self) -> i32 {
1120        self.get_months_ranged().get()
1121    }
1122
1123    /// Returns the number of week units in this span.
1124    ///
1125    /// Note that this is not the same as the total number of weeks in the
1126    /// span. To get that, you'll need to use either [`Span::round`] or
1127    /// [`Span::total`].
1128    ///
1129    /// # Example
1130    ///
1131    /// ```
1132    /// use jiff::{civil::date, ToSpan, Unit};
1133    ///
1134    /// let span = 3.weeks().days(14);
1135    /// assert_eq!(3, span.get_weeks());
1136    /// assert_eq!(5.0, span.total((Unit::Week, date(2024, 1, 1)))?);
1137    ///
1138    /// # Ok::<(), Box<dyn std::error::Error>>(())
1139    /// ```
1140    #[inline]
1141    pub fn get_weeks(&self) -> i32 {
1142        self.get_weeks_ranged().get()
1143    }
1144
1145    /// Returns the number of day units in this span.
1146    ///
1147    /// Note that this is not the same as the total number of days in the
1148    /// span. To get that, you'll need to use either [`Span::round`] or
1149    /// [`Span::total`].
1150    ///
1151    /// # Example
1152    ///
1153    /// ```
1154    /// use jiff::{ToSpan, Unit, Zoned};
1155    ///
1156    /// let span = 3.days().hours(47);
1157    /// assert_eq!(3, span.get_days());
1158    ///
1159    /// let zdt: Zoned = "2024-03-07[America/New_York]".parse()?;
1160    /// assert_eq!(5.0, span.total((Unit::Day, &zdt))?);
1161    ///
1162    /// # Ok::<(), Box<dyn std::error::Error>>(())
1163    /// ```
1164    #[inline]
1165    pub fn get_days(&self) -> i32 {
1166        self.get_days_ranged().get()
1167    }
1168
1169    /// Returns the number of hour units in this span.
1170    ///
1171    /// Note that this is not the same as the total number of hours in the
1172    /// span. To get that, you'll need to use either [`Span::round`] or
1173    /// [`Span::total`].
1174    ///
1175    /// # Example
1176    ///
1177    /// ```
1178    /// use jiff::{ToSpan, Unit};
1179    ///
1180    /// let span = 3.hours().minutes(120);
1181    /// assert_eq!(3, span.get_hours());
1182    /// assert_eq!(5.0, span.total(Unit::Hour)?);
1183    ///
1184    /// # Ok::<(), Box<dyn std::error::Error>>(())
1185    /// ```
1186    #[inline]
1187    pub fn get_hours(&self) -> i32 {
1188        self.get_hours_ranged().get()
1189    }
1190
1191    /// Returns the number of minute units in this span.
1192    ///
1193    /// Note that this is not the same as the total number of minutes in the
1194    /// span. To get that, you'll need to use either [`Span::round`] or
1195    /// [`Span::total`].
1196    ///
1197    /// # Example
1198    ///
1199    /// ```
1200    /// use jiff::{ToSpan, Unit};
1201    ///
1202    /// let span = 3.minutes().seconds(120);
1203    /// assert_eq!(3, span.get_minutes());
1204    /// assert_eq!(5.0, span.total(Unit::Minute)?);
1205    ///
1206    /// # Ok::<(), Box<dyn std::error::Error>>(())
1207    /// ```
1208    #[inline]
1209    pub fn get_minutes(&self) -> i64 {
1210        self.get_minutes_ranged().get()
1211    }
1212
1213    /// Returns the number of second units in this span.
1214    ///
1215    /// Note that this is not the same as the total number of seconds in the
1216    /// span. To get that, you'll need to use either [`Span::round`] or
1217    /// [`Span::total`].
1218    ///
1219    /// # Example
1220    ///
1221    /// ```
1222    /// use jiff::{ToSpan, Unit};
1223    ///
1224    /// let span = 3.seconds().milliseconds(2_000);
1225    /// assert_eq!(3, span.get_seconds());
1226    /// assert_eq!(5.0, span.total(Unit::Second)?);
1227    ///
1228    /// # Ok::<(), Box<dyn std::error::Error>>(())
1229    /// ```
1230    #[inline]
1231    pub fn get_seconds(&self) -> i64 {
1232        self.get_seconds_ranged().get()
1233    }
1234
1235    /// Returns the number of millisecond units in this span.
1236    ///
1237    /// Note that this is not the same as the total number of milliseconds in
1238    /// the span. To get that, you'll need to use either [`Span::round`] or
1239    /// [`Span::total`].
1240    ///
1241    /// # Example
1242    ///
1243    /// ```
1244    /// use jiff::{ToSpan, Unit};
1245    ///
1246    /// let span = 3.milliseconds().microseconds(2_000);
1247    /// assert_eq!(3, span.get_milliseconds());
1248    /// assert_eq!(5.0, span.total(Unit::Millisecond)?);
1249    ///
1250    /// # Ok::<(), Box<dyn std::error::Error>>(())
1251    /// ```
1252    #[inline]
1253    pub fn get_milliseconds(&self) -> i64 {
1254        self.get_milliseconds_ranged().get()
1255    }
1256
1257    /// Returns the number of microsecond units in this span.
1258    ///
1259    /// Note that this is not the same as the total number of microseconds in
1260    /// the span. To get that, you'll need to use either [`Span::round`] or
1261    /// [`Span::total`].
1262    ///
1263    /// # Example
1264    ///
1265    /// ```
1266    /// use jiff::{ToSpan, Unit};
1267    ///
1268    /// let span = 3.microseconds().nanoseconds(2_000);
1269    /// assert_eq!(3, span.get_microseconds());
1270    /// assert_eq!(5.0, span.total(Unit::Microsecond)?);
1271    ///
1272    /// # Ok::<(), Box<dyn std::error::Error>>(())
1273    /// ```
1274    #[inline]
1275    pub fn get_microseconds(&self) -> i64 {
1276        self.get_microseconds_ranged().get()
1277    }
1278
1279    /// Returns the number of nanosecond units in this span.
1280    ///
1281    /// Note that this is not the same as the total number of nanoseconds in
1282    /// the span. To get that, you'll need to use either [`Span::round`] or
1283    /// [`Span::total`].
1284    ///
1285    /// # Example
1286    ///
1287    /// ```
1288    /// use jiff::{ToSpan, Unit};
1289    ///
1290    /// let span = 3.microseconds().nanoseconds(2_000);
1291    /// assert_eq!(2_000, span.get_nanoseconds());
1292    /// assert_eq!(5_000.0, span.total(Unit::Nanosecond)?);
1293    ///
1294    /// # Ok::<(), Box<dyn std::error::Error>>(())
1295    /// ```
1296    #[inline]
1297    pub fn get_nanoseconds(&self) -> i64 {
1298        self.get_nanoseconds_ranged().get()
1299    }
1300}
1301
1302/// Routines for manipulating, comparing and inspecting `Span` values.
1303impl Span {
1304    /// Returns a new span that is the absolute value of this span.
1305    ///
1306    /// If this span is zero or positive, then this is a no-op.
1307    ///
1308    /// # Example
1309    ///
1310    /// ```
1311    /// use jiff::ToSpan;
1312    ///
1313    /// let span = -100.seconds();
1314    /// assert_eq!(span.to_string(), "-PT100S");
1315    /// let span = span.abs();
1316    /// assert_eq!(span.to_string(), "PT100S");
1317    /// ```
1318    #[inline]
1319    pub fn abs(self) -> Span {
1320        if self.is_zero() {
1321            return self;
1322        }
1323        Span { sign: ri8::N::<1>(), ..self }
1324    }
1325
1326    /// Returns a new span that negates this span.
1327    ///
1328    /// If this span is zero, then this is a no-op. If this span is negative,
1329    /// then the returned span is positive. If this span is positive, then
1330    /// the returned span is negative.
1331    ///
1332    /// # Example
1333    ///
1334    /// ```
1335    /// use jiff::ToSpan;
1336    ///
1337    /// let span = 100.days();
1338    /// assert_eq!(span.to_string(), "P100D");
1339    /// let span = span.negate();
1340    /// assert_eq!(span.to_string(), "-P100D");
1341    /// ```
1342    ///
1343    /// # Example: available via the negation operator
1344    ///
1345    /// This routine can also be used via `-`:
1346    ///
1347    /// ```
1348    /// use jiff::ToSpan;
1349    ///
1350    /// let span = 100.days();
1351    /// assert_eq!(span.to_string(), "P100D");
1352    /// let span = -span;
1353    /// assert_eq!(span.to_string(), "-P100D");
1354    /// ```
1355    #[inline]
1356    pub fn negate(self) -> Span {
1357        Span { sign: -self.sign, ..self }
1358    }
1359
1360    /// Returns the "sign number" or "signum" of this span.
1361    ///
1362    /// The number returned is `-1` when this span is negative,
1363    /// `0` when this span is zero and `1` when this span is positive.
1364    #[inline]
1365    pub fn signum(self) -> i8 {
1366        self.sign.signum().get()
1367    }
1368
1369    /// Returns true if and only if this span is positive.
1370    ///
1371    /// This returns false when the span is zero or negative.
1372    ///
1373    /// # Example
1374    ///
1375    /// ```
1376    /// use jiff::ToSpan;
1377    ///
1378    /// assert!(!2.months().is_negative());
1379    /// assert!((-2.months()).is_negative());
1380    /// ```
1381    #[inline]
1382    pub fn is_positive(self) -> bool {
1383        self.get_sign_ranged() > 0
1384    }
1385
1386    /// Returns true if and only if this span is negative.
1387    ///
1388    /// This returns false when the span is zero or positive.
1389    ///
1390    /// # Example
1391    ///
1392    /// ```
1393    /// use jiff::ToSpan;
1394    ///
1395    /// assert!(!2.months().is_negative());
1396    /// assert!((-2.months()).is_negative());
1397    /// ```
1398    #[inline]
1399    pub fn is_negative(self) -> bool {
1400        self.get_sign_ranged() < 0
1401    }
1402
1403    /// Returns true if and only if every field in this span is set to `0`.
1404    ///
1405    /// # Example
1406    ///
1407    /// ```
1408    /// use jiff::{Span, ToSpan};
1409    ///
1410    /// assert!(Span::new().is_zero());
1411    /// assert!(Span::default().is_zero());
1412    /// assert!(0.seconds().is_zero());
1413    /// assert!(!0.seconds().seconds(1).is_zero());
1414    /// assert!(0.seconds().seconds(1).seconds(0).is_zero());
1415    /// ```
1416    #[inline]
1417    pub fn is_zero(self) -> bool {
1418        self.sign == 0
1419    }
1420
1421    /// Returns this `Span` as a value with a type that implements the
1422    /// `Hash`, `Eq` and `PartialEq` traits in a fieldwise fashion.
1423    ///
1424    /// A `SpanFieldwise` is meant to make it easy to compare two spans in a
1425    /// "dumb" way based purely on its unit values. This is distinct from
1426    /// something like [`Span::compare`] that performs a comparison on the
1427    /// actual elapsed time of two spans.
1428    ///
1429    /// It is generally discouraged to use `SpanFieldwise` since spans that
1430    /// represent an equivalent elapsed amount of time may compare unequal.
1431    /// However, in some cases, it is useful to be able to assert precise
1432    /// field values. For example, Jiff itself makes heavy use of fieldwise
1433    /// comparisons for tests.
1434    ///
1435    /// # Example: the difference between `SpanFieldwise` and `Span::compare`
1436    ///
1437    /// In short, `SpanFieldwise` considers `2 hours` and `120 minutes` to be
1438    /// distinct values, but `Span::compare` considers them to be equivalent:
1439    ///
1440    /// ```
1441    /// use std::cmp::Ordering;
1442    /// use jiff::ToSpan;
1443    ///
1444    /// assert_ne!(120.minutes().fieldwise(), 2.hours().fieldwise());
1445    /// assert_eq!(120.minutes().compare(2.hours())?, Ordering::Equal);
1446    ///
1447    /// # Ok::<(), Box<dyn std::error::Error>>(())
1448    /// ```
1449    #[inline]
1450    pub fn fieldwise(self) -> SpanFieldwise {
1451        SpanFieldwise(self)
1452    }
1453
1454    /// Multiplies each field in this span by a given integer.
1455    ///
1456    /// If this would cause any individual field in this span to overflow, then
1457    /// this returns an error.
1458    ///
1459    /// # Example
1460    ///
1461    /// ```
1462    /// use jiff::ToSpan;
1463    ///
1464    /// let span = 4.days().seconds(8);
1465    /// assert_eq!(span.checked_mul(2)?, 8.days().seconds(16).fieldwise());
1466    /// assert_eq!(span.checked_mul(-3)?, -12.days().seconds(24).fieldwise());
1467    /// // Notice that no re-balancing is done. It's "just" multiplication.
1468    /// assert_eq!(span.checked_mul(10)?, 40.days().seconds(80).fieldwise());
1469    ///
1470    /// let span = 10_000.years();
1471    /// // too big!
1472    /// assert!(span.checked_mul(3).is_err());
1473    ///
1474    /// # Ok::<(), Box<dyn std::error::Error>>(())
1475    /// ```
1476    ///
1477    /// # Example: available via the multiplication operator
1478    ///
1479    /// This method can be used via the `*` operator. Note though that a panic
1480    /// happens on overflow.
1481    ///
1482    /// ```
1483    /// use jiff::ToSpan;
1484    ///
1485    /// let span = 4.days().seconds(8);
1486    /// assert_eq!(span * 2, 8.days().seconds(16).fieldwise());
1487    /// assert_eq!(2 * span, 8.days().seconds(16).fieldwise());
1488    /// assert_eq!(span * -3, -12.days().seconds(24).fieldwise());
1489    /// assert_eq!(-3 * span, -12.days().seconds(24).fieldwise());
1490    ///
1491    /// # Ok::<(), Box<dyn std::error::Error>>(())
1492    /// ```
1493    #[inline]
1494    pub fn checked_mul(mut self, rhs: i64) -> Result<Span, Error> {
1495        if rhs == 0 {
1496            return Ok(Span::default());
1497        } else if rhs == 1 {
1498            return Ok(self);
1499        }
1500        self.sign *= t::Sign::try_new("span factor", rhs.signum())
1501            .expect("signum fits in ri8");
1502        // This is all somewhat odd, but since each of our span fields uses
1503        // a different primitive representation and range of allowed values,
1504        // we only seek to perform multiplications when they will actually
1505        // do something. Otherwise, we risk multiplying the mins/maxs of a
1506        // ranged integer and causing a spurious panic. Basically, the idea
1507        // here is the allowable values for our multiple depend on what we're
1508        // actually going to multiply with it. If our span has non-zero years,
1509        // then our multiple can't exceed the bounds of `SpanYears`, otherwise
1510        // it is guaranteed to overflow.
1511        if self.years != 0 {
1512            let rhs = t::SpanYears::try_new("years multiple", rhs)?;
1513            self.years = self.years.try_checked_mul("years", rhs.abs())?;
1514        }
1515        if self.months != 0 {
1516            let rhs = t::SpanMonths::try_new("months multiple", rhs)?;
1517            self.months = self.months.try_checked_mul("months", rhs.abs())?;
1518        }
1519        if self.weeks != 0 {
1520            let rhs = t::SpanWeeks::try_new("weeks multiple", rhs)?;
1521            self.weeks = self.weeks.try_checked_mul("weeks", rhs.abs())?;
1522        }
1523        if self.days != 0 {
1524            let rhs = t::SpanDays::try_new("days multiple", rhs)?;
1525            self.days = self.days.try_checked_mul("days", rhs.abs())?;
1526        }
1527        if self.hours != 0 {
1528            let rhs = t::SpanHours::try_new("hours multiple", rhs)?;
1529            self.hours = self.hours.try_checked_mul("hours", rhs.abs())?;
1530        }
1531        if self.minutes != 0 {
1532            let rhs = t::SpanMinutes::try_new("minutes multiple", rhs)?;
1533            self.minutes =
1534                self.minutes.try_checked_mul("minutes", rhs.abs())?;
1535        }
1536        if self.seconds != 0 {
1537            let rhs = t::SpanSeconds::try_new("seconds multiple", rhs)?;
1538            self.seconds =
1539                self.seconds.try_checked_mul("seconds", rhs.abs())?;
1540        }
1541        if self.milliseconds != 0 {
1542            let rhs =
1543                t::SpanMilliseconds::try_new("milliseconds multiple", rhs)?;
1544            self.milliseconds = self
1545                .milliseconds
1546                .try_checked_mul("milliseconds", rhs.abs())?;
1547        }
1548        if self.microseconds != 0 {
1549            let rhs =
1550                t::SpanMicroseconds::try_new("microseconds multiple", rhs)?;
1551            self.microseconds = self
1552                .microseconds
1553                .try_checked_mul("microseconds", rhs.abs())?;
1554        }
1555        if self.nanoseconds != 0 {
1556            let rhs =
1557                t::SpanNanoseconds::try_new("nanoseconds multiple", rhs)?;
1558            self.nanoseconds =
1559                self.nanoseconds.try_checked_mul("nanoseconds", rhs.abs())?;
1560        }
1561        // N.B. We don't need to update `self.units` here since it shouldn't
1562        // change. The only way it could is if a unit goes from zero to
1563        // non-zero (which can't happen, because multiplication by zero is
1564        // always zero), or if a unit goes from non-zero to zero. That also
1565        // can't happen because we handle the case of the factor being zero
1566        // specially above, and it returns a `Span` will all units zero
1567        // correctly.
1568        Ok(self)
1569    }
1570
1571    /// Adds a span to this one and returns the sum as a new span.
1572    ///
1573    /// When adding a span with units greater than hours, callers must provide
1574    /// a relative datetime to anchor the spans.
1575    ///
1576    /// Arithmetic proceeds as specified in [RFC 5545]. Bigger units are
1577    /// added together before smaller units.
1578    ///
1579    /// This routine accepts anything that implements `Into<SpanArithmetic>`.
1580    /// There are some trait implementations that make using this routine
1581    /// ergonomic:
1582    ///
1583    /// * `From<Span> for SpanArithmetic` adds the given span to this one.
1584    /// * `From<(Span, civil::Date)> for SpanArithmetic` adds the given
1585    /// span to this one relative to the given date. There are also `From`
1586    /// implementations for `civil::DateTime` and `Zoned`.
1587    ///
1588    /// This also works with different duration types, such as
1589    /// [`SignedDuration`] and [`std::time::Duration`], via additional trait
1590    /// implementations:
1591    ///
1592    /// * `From<SignedDuration> for SpanArithmetic` adds the given duration to
1593    /// this one.
1594    /// * `From<(SignedDuration, civil::Date)> for SpanArithmetic` adds the
1595    /// given duration to this one relative to the given date. There are also
1596    /// `From` implementations for `civil::DateTime` and `Zoned`.
1597    ///
1598    /// And similarly for `std::time::Duration`.
1599    ///
1600    /// Adding a negative span is equivalent to subtracting its absolute value.
1601    ///
1602    /// The largest non-zero unit in the span returned is at most the largest
1603    /// non-zero unit among the two spans being added. For an absolute
1604    /// duration, its "largest" unit is considered to be nanoseconds.
1605    ///
1606    /// The sum returned is automatically re-balanced so that the span is not
1607    /// "bottom heavy."
1608    ///
1609    /// [RFC 5545]: https://datatracker.ietf.org/doc/html/rfc5545
1610    ///
1611    /// # Errors
1612    ///
1613    /// This returns an error when adding the two spans would overflow any
1614    /// individual field of a span. This will also return an error if either
1615    /// of the spans have non-zero units of days or greater and no relative
1616    /// reference time is provided.
1617    ///
1618    /// Callers may use [`SpanArithmetic::days_are_24_hours`] as a special
1619    /// marker instead of providing a relative civil date to indicate that
1620    /// all days should be 24 hours long. This also results in treating all
1621    /// weeks as seven 24 hour days (168 hours).
1622    ///
1623    /// # Example
1624    ///
1625    /// ```
1626    /// use jiff::ToSpan;
1627    ///
1628    /// assert_eq!(
1629    ///     1.hour().checked_add(30.minutes())?,
1630    ///     1.hour().minutes(30).fieldwise(),
1631    /// );
1632    ///
1633    /// # Ok::<(), Box<dyn std::error::Error>>(())
1634    /// ```
1635    ///
1636    /// # Example: re-balancing
1637    ///
1638    /// This example shows how units are automatically rebalanced into bigger
1639    /// units when appropriate.
1640    ///
1641    /// ```
1642    /// use jiff::ToSpan;
1643    ///
1644    /// let span1 = 2.hours().minutes(59);
1645    /// let span2 = 2.minutes();
1646    /// assert_eq!(span1.checked_add(span2)?, 3.hours().minutes(1).fieldwise());
1647    ///
1648    /// # Ok::<(), Box<dyn std::error::Error>>(())
1649    /// ```
1650    ///
1651    /// # Example: days are not assumed to be 24 hours by default
1652    ///
1653    /// When dealing with units involving days or weeks, one must either
1654    /// provide a relative datetime (shown in the following examples) or opt
1655    /// into invariant 24 hour days:
1656    ///
1657    /// ```
1658    /// use jiff::{SpanRelativeTo, ToSpan};
1659    ///
1660    /// let span1 = 2.days().hours(23);
1661    /// let span2 = 2.hours();
1662    /// assert_eq!(
1663    ///     span1.checked_add((span2, SpanRelativeTo::days_are_24_hours()))?,
1664    ///     3.days().hours(1).fieldwise(),
1665    /// );
1666    ///
1667    /// # Ok::<(), Box<dyn std::error::Error>>(())
1668    /// ```
1669    ///
1670    /// # Example: adding spans with calendar units
1671    ///
1672    /// If you try to add two spans with calendar units without specifying a
1673    /// relative datetime, you'll get an error:
1674    ///
1675    /// ```
1676    /// use jiff::ToSpan;
1677    ///
1678    /// let span1 = 1.month().days(15);
1679    /// let span2 = 15.days();
1680    /// assert!(span1.checked_add(span2).is_err());
1681    /// ```
1682    ///
1683    /// A relative datetime is needed because calendar spans may correspond to
1684    /// different actual durations depending on where the span begins:
1685    ///
1686    /// ```
1687    /// use jiff::{civil::date, ToSpan};
1688    ///
1689    /// let span1 = 1.month().days(15);
1690    /// let span2 = 15.days();
1691    /// // 1 month from March 1 is 31 days...
1692    /// assert_eq!(
1693    ///     span1.checked_add((span2, date(2008, 3, 1)))?,
1694    ///     2.months().fieldwise(),
1695    /// );
1696    /// // ... but 1 month from April 1 is 30 days!
1697    /// assert_eq!(
1698    ///     span1.checked_add((span2, date(2008, 4, 1)))?,
1699    ///     1.month().days(30).fieldwise(),
1700    /// );
1701    ///
1702    /// # Ok::<(), Box<dyn std::error::Error>>(())
1703    /// ```
1704    ///
1705    /// # Example: error on overflow
1706    ///
1707    /// Adding two spans can overflow, and this will result in an error:
1708    ///
1709    /// ```
1710    /// use jiff::ToSpan;
1711    ///
1712    /// assert!(19_998.years().checked_add(1.year()).is_err());
1713    /// ```
1714    ///
1715    /// # Example: adding an absolute duration to a span
1716    ///
1717    /// This shows how one isn't limited to just adding two spans together.
1718    /// One can also add absolute durations to a span.
1719    ///
1720    /// ```
1721    /// use std::time::Duration;
1722    ///
1723    /// use jiff::{SignedDuration, ToSpan};
1724    ///
1725    /// assert_eq!(
1726    ///     1.hour().checked_add(SignedDuration::from_mins(30))?,
1727    ///     1.hour().minutes(30).fieldwise(),
1728    /// );
1729    /// assert_eq!(
1730    ///     1.hour().checked_add(Duration::from_secs(30 * 60))?,
1731    ///     1.hour().minutes(30).fieldwise(),
1732    /// );
1733    ///
1734    /// # Ok::<(), Box<dyn std::error::Error>>(())
1735    /// ```
1736    ///
1737    /// Note that even when adding an absolute duration, if the span contains
1738    /// non-uniform units, you still need to provide a relative datetime:
1739    ///
1740    /// ```
1741    /// use jiff::{civil::date, SignedDuration, ToSpan};
1742    ///
1743    /// // Might be 1 month or less than 1 month!
1744    /// let dur = SignedDuration::from_hours(30 * 24);
1745    /// // No relative datetime provided even when the span
1746    /// // contains non-uniform units results in an error.
1747    /// assert!(1.month().checked_add(dur).is_err());
1748    /// // In this case, 30 days is one month (April).
1749    /// assert_eq!(
1750    ///     1.month().checked_add((dur, date(2024, 3, 1)))?,
1751    ///     2.months().fieldwise(),
1752    /// );
1753    /// // In this case, 30 days is less than one month (May).
1754    /// assert_eq!(
1755    ///     1.month().checked_add((dur, date(2024, 4, 1)))?,
1756    ///     1.month().days(30).fieldwise(),
1757    /// );
1758    ///
1759    /// # Ok::<(), Box<dyn std::error::Error>>(())
1760    /// ```
1761    #[inline]
1762    pub fn checked_add<'a, A: Into<SpanArithmetic<'a>>>(
1763        &self,
1764        options: A,
1765    ) -> Result<Span, Error> {
1766        let options: SpanArithmetic<'_> = options.into();
1767        options.checked_add(*self)
1768    }
1769
1770    #[inline]
1771    fn checked_add_span<'a>(
1772        &self,
1773        relative: Option<SpanRelativeTo<'a>>,
1774        span: &Span,
1775    ) -> Result<Span, Error> {
1776        let (span1, span2) = (*self, *span);
1777        let unit = span1.largest_unit().max(span2.largest_unit());
1778        let start = match relative {
1779            Some(r) => match r.to_relative(unit)? {
1780                None => return span1.checked_add_invariant(unit, &span2),
1781                Some(r) => r,
1782            },
1783            None => {
1784                requires_relative_date_err(unit)?;
1785                return span1.checked_add_invariant(unit, &span2);
1786            }
1787        };
1788        let mid = start.checked_add(span1)?;
1789        let end = mid.checked_add(span2)?;
1790        start.until(unit, &end)
1791    }
1792
1793    #[inline]
1794    fn checked_add_duration<'a>(
1795        &self,
1796        relative: Option<SpanRelativeTo<'a>>,
1797        duration: SignedDuration,
1798    ) -> Result<Span, Error> {
1799        let (span1, dur2) = (*self, duration);
1800        let unit = span1.largest_unit();
1801        let start = match relative {
1802            Some(r) => match r.to_relative(unit)? {
1803                None => {
1804                    return span1.checked_add_invariant_duration(unit, dur2)
1805                }
1806                Some(r) => r,
1807            },
1808            None => {
1809                requires_relative_date_err(unit)?;
1810                return span1.checked_add_invariant_duration(unit, dur2);
1811            }
1812        };
1813        let mid = start.checked_add(span1)?;
1814        let end = mid.checked_add_duration(dur2)?;
1815        start.until(unit, &end)
1816    }
1817
1818    /// Like `checked_add`, but only applies for invariant units. That is,
1819    /// when *both* spans whose non-zero units are all hours or smaller
1820    /// (or weeks or smaller with the "days are 24 hours" marker).
1821    #[inline]
1822    fn checked_add_invariant(
1823        &self,
1824        unit: Unit,
1825        span: &Span,
1826    ) -> Result<Span, Error> {
1827        assert!(unit <= Unit::Week);
1828        let nanos1 = self.to_invariant_nanoseconds();
1829        let nanos2 = span.to_invariant_nanoseconds();
1830        let sum = nanos1 + nanos2;
1831        Span::from_invariant_nanoseconds(unit, sum)
1832    }
1833
1834    /// Like `checked_add_invariant`, but adds an absolute duration.
1835    #[inline]
1836    fn checked_add_invariant_duration(
1837        &self,
1838        unit: Unit,
1839        duration: SignedDuration,
1840    ) -> Result<Span, Error> {
1841        assert!(unit <= Unit::Week);
1842        let nanos1 = self.to_invariant_nanoseconds();
1843        let nanos2 = t::NoUnits96::new_unchecked(duration.as_nanos());
1844        let sum = nanos1 + nanos2;
1845        Span::from_invariant_nanoseconds(unit, sum)
1846    }
1847
1848    /// This routine is identical to [`Span::checked_add`] with the given
1849    /// duration negated.
1850    ///
1851    /// # Errors
1852    ///
1853    /// This has the same error conditions as [`Span::checked_add`].
1854    ///
1855    /// # Example
1856    ///
1857    /// ```
1858    /// use std::time::Duration;
1859    ///
1860    /// use jiff::{SignedDuration, ToSpan};
1861    ///
1862    /// assert_eq!(
1863    ///     1.hour().checked_sub(30.minutes())?,
1864    ///     30.minutes().fieldwise(),
1865    /// );
1866    /// assert_eq!(
1867    ///     1.hour().checked_sub(SignedDuration::from_mins(30))?,
1868    ///     30.minutes().fieldwise(),
1869    /// );
1870    /// assert_eq!(
1871    ///     1.hour().checked_sub(Duration::from_secs(30 * 60))?,
1872    ///     30.minutes().fieldwise(),
1873    /// );
1874    ///
1875    /// # Ok::<(), Box<dyn std::error::Error>>(())
1876    /// ```
1877    #[inline]
1878    pub fn checked_sub<'a, A: Into<SpanArithmetic<'a>>>(
1879        &self,
1880        options: A,
1881    ) -> Result<Span, Error> {
1882        let mut options: SpanArithmetic<'_> = options.into();
1883        options.duration = options.duration.checked_neg()?;
1884        options.checked_add(*self)
1885    }
1886
1887    /// Compares two spans in terms of how long they are. Negative spans are
1888    /// considered shorter than the zero span.
1889    ///
1890    /// Two spans compare equal when they correspond to the same duration
1891    /// of time, even if their individual fields are different. This is in
1892    /// contrast to the `Eq` trait implementation of `Span`, which performs
1893    /// exact field-wise comparisons. This split exists because the comparison
1894    /// provided by this routine is "heavy" in that it may need to do
1895    /// datetime arithmetic to return an answer. In contrast, the `Eq` trait
1896    /// implementation is "cheap."
1897    ///
1898    /// This routine accepts anything that implements `Into<SpanCompare>`.
1899    /// There are some trait implementations that make using this routine
1900    /// ergonomic:
1901    ///
1902    /// * `From<Span> for SpanCompare` compares the given span to this one.
1903    /// * `From<(Span, civil::Date)> for SpanArithmetic` compares the given
1904    /// span to this one relative to the given date. There are also `From`
1905    /// implementations for `civil::DateTime` and `Zoned`.
1906    ///
1907    /// # Errors
1908    ///
1909    /// If either of the spans being compared have a non-zero calendar unit
1910    /// (units bigger than hours), then this routine requires a relative
1911    /// datetime. If one is not provided, then an error is returned.
1912    ///
1913    /// An error can also occur when adding either span to the relative
1914    /// datetime given results in overflow.
1915    ///
1916    /// Callers may use [`SpanArithmetic::days_are_24_hours`] as a special
1917    /// marker instead of providing a relative civil date to indicate that
1918    /// all days should be 24 hours long. This also results in treating all
1919    /// weeks as seven 24 hour days (168 hours).
1920    ///
1921    /// # Example
1922    ///
1923    /// ```
1924    /// use jiff::ToSpan;
1925    ///
1926    /// let span1 = 3.hours();
1927    /// let span2 = 180.minutes();
1928    /// assert_eq!(span1.compare(span2)?, std::cmp::Ordering::Equal);
1929    /// // But notice that the two spans are not equal via `Eq`:
1930    /// assert_ne!(span1.fieldwise(), span2.fieldwise());
1931    ///
1932    /// # Ok::<(), Box<dyn std::error::Error>>(())
1933    /// ```
1934    ///
1935    /// # Example: negative spans are less than zero
1936    ///
1937    /// ```
1938    /// use jiff::ToSpan;
1939    ///
1940    /// let span1 = -1.second();
1941    /// let span2 = 0.seconds();
1942    /// assert_eq!(span1.compare(span2)?, std::cmp::Ordering::Less);
1943    ///
1944    /// # Ok::<(), Box<dyn std::error::Error>>(())
1945    /// ```
1946    ///
1947    /// # Example: comparisons take DST into account
1948    ///
1949    /// When a relative datetime is time zone aware, then DST is taken into
1950    /// account when comparing spans:
1951    ///
1952    /// ```
1953    /// use jiff::{civil, ToSpan, Zoned};
1954    ///
1955    /// let span1 = 79.hours().minutes(10);
1956    /// let span2 = 3.days().hours(7).seconds(630);
1957    /// let span3 = 3.days().hours(6).minutes(50);
1958    ///
1959    /// let relative: Zoned = "2020-11-01T00-07[America/Los_Angeles]".parse()?;
1960    /// let mut spans = [span1, span2, span3];
1961    /// spans.sort_by(|s1, s2| s1.compare((s2, &relative)).unwrap());
1962    /// assert_eq!(
1963    ///     spans.map(|sp| sp.fieldwise()),
1964    ///     [span1.fieldwise(), span3.fieldwise(), span2.fieldwise()],
1965    /// );
1966    ///
1967    /// // Compare with the result of sorting without taking DST into account.
1968    /// // We can that by providing a relative civil date:
1969    /// let relative = civil::date(2020, 11, 1);
1970    /// spans.sort_by(|s1, s2| s1.compare((s2, relative)).unwrap());
1971    /// assert_eq!(
1972    ///     spans.map(|sp| sp.fieldwise()),
1973    ///     [span3.fieldwise(), span1.fieldwise(), span2.fieldwise()],
1974    /// );
1975    ///
1976    /// # Ok::<(), Box<dyn std::error::Error>>(())
1977    /// ```
1978    ///
1979    /// See the examples for [`Span::total`] if you want to sort spans without
1980    /// an `unwrap()` call.
1981    #[inline]
1982    pub fn compare<'a, C: Into<SpanCompare<'a>>>(
1983        &self,
1984        options: C,
1985    ) -> Result<Ordering, Error> {
1986        let options: SpanCompare<'_> = options.into();
1987        options.compare(*self)
1988    }
1989
1990    /// Returns a floating point number representing the total number of a
1991    /// specific unit (as given) in this span. If the span is not evenly
1992    /// divisible by the requested units, then the number returned may have a
1993    /// fractional component.
1994    ///
1995    /// This routine accepts anything that implements `Into<SpanTotal>`. There
1996    /// are some trait implementations that make using this routine ergonomic:
1997    ///
1998    /// * `From<Unit> for SpanTotal` computes a total for the given unit in
1999    /// this span.
2000    /// * `From<(Unit, civil::Date)> for SpanTotal` computes a total for the
2001    /// given unit in this span, relative to the given date. There are also
2002    /// `From` implementations for `civil::DateTime` and `Zoned`.
2003    ///
2004    /// # Errors
2005    ///
2006    /// If this span has any non-zero calendar unit (units bigger than hours),
2007    /// then this routine requires a relative datetime. If one is not provided,
2008    /// then an error is returned.
2009    ///
2010    /// An error can also occur when adding the span to the relative
2011    /// datetime given results in overflow.
2012    ///
2013    /// Callers may use [`SpanArithmetic::days_are_24_hours`] as a special
2014    /// marker instead of providing a relative civil date to indicate that
2015    /// all days should be 24 hours long. This also results in treating all
2016    /// weeks as seven 24 hour days (168 hours).
2017    ///
2018    /// # Example
2019    ///
2020    /// This example shows how to find the number of seconds in a particular
2021    /// span:
2022    ///
2023    /// ```
2024    /// use jiff::{ToSpan, Unit};
2025    ///
2026    /// let span = 3.hours().minutes(10);
2027    /// assert_eq!(span.total(Unit::Second)?, 11_400.0);
2028    ///
2029    /// # Ok::<(), Box<dyn std::error::Error>>(())
2030    /// ```
2031    ///
2032    /// # Example: 24 hour days
2033    ///
2034    /// This shows how to find the total number of 24 hour days in
2035    /// `123,456,789` seconds.
2036    ///
2037    /// ```
2038    /// use jiff::{SpanTotal, ToSpan, Unit};
2039    ///
2040    /// let span = 123_456_789.seconds();
2041    /// assert_eq!(
2042    ///     span.total(SpanTotal::from(Unit::Day).days_are_24_hours())?,
2043    ///     1428.8980208333332,
2044    /// );
2045    ///
2046    /// # Ok::<(), Box<dyn std::error::Error>>(())
2047    /// ```
2048    ///
2049    /// # Example: DST is taken into account
2050    ///
2051    /// The month of March 2024 in `America/New_York` had 31 days, but one of
2052    /// those days was 23 hours long due a transition into daylight saving
2053    /// time:
2054    ///
2055    /// ```
2056    /// use jiff::{civil::date, ToSpan, Unit};
2057    ///
2058    /// let span = 744.hours();
2059    /// let relative = date(2024, 3, 1).in_tz("America/New_York")?;
2060    /// // Because of the short day, 744 hours is actually a little *more* than
2061    /// // 1 month starting from 2024-03-01.
2062    /// assert_eq!(span.total((Unit::Month, &relative))?, 1.0013888888888889);
2063    ///
2064    /// # Ok::<(), Box<dyn std::error::Error>>(())
2065    /// ```
2066    ///
2067    /// Now compare what happens when the relative datetime is civil and not
2068    /// time zone aware:
2069    ///
2070    /// ```
2071    /// use jiff::{civil::date, ToSpan, Unit};
2072    ///
2073    /// let span = 744.hours();
2074    /// let relative = date(2024, 3, 1);
2075    /// assert_eq!(span.total((Unit::Month, relative))?, 1.0);
2076    ///
2077    /// # Ok::<(), Box<dyn std::error::Error>>(())
2078    /// ```
2079    ///
2080    /// # Example: infallible sorting
2081    ///
2082    /// The sorting example in [`Span::compare`] has to use `unwrap()` in
2083    /// its `sort_by(..)` call because `Span::compare` may fail and there
2084    /// is no "fallible" sorting routine in Rust's standard library (as of
2085    /// 2024-07-07). While the ways in which `Span::compare` can fail for
2086    /// a valid configuration are limited to overflow for "extreme" values, it
2087    /// is possible to sort spans infallibly by computing floating point
2088    /// representations for each span up-front:
2089    ///
2090    /// ```
2091    /// use jiff::{civil::Date, ToSpan, Unit, Zoned};
2092    ///
2093    /// let span1 = 79.hours().minutes(10);
2094    /// let span2 = 3.days().hours(7).seconds(630);
2095    /// let span3 = 3.days().hours(6).minutes(50);
2096    ///
2097    /// let relative: Zoned = "2020-11-01T00-07[America/Los_Angeles]".parse()?;
2098    /// let mut spans = [
2099    ///     (span1, span1.total((Unit::Day, &relative))?),
2100    ///     (span2, span2.total((Unit::Day, &relative))?),
2101    ///     (span3, span3.total((Unit::Day, &relative))?),
2102    /// ];
2103    /// spans.sort_by(|&(_, total1), &(_, total2)| total1.total_cmp(&total2));
2104    /// assert_eq!(
2105    ///     spans.map(|(sp, _)| sp.fieldwise()),
2106    ///     [span1.fieldwise(), span3.fieldwise(), span2.fieldwise()],
2107    /// );
2108    ///
2109    /// // Compare with the result of sorting without taking DST into account.
2110    /// // We do that here by providing a relative civil date.
2111    /// let relative: Date = "2020-11-01".parse()?;
2112    /// let mut spans = [
2113    ///     (span1, span1.total((Unit::Day, relative))?),
2114    ///     (span2, span2.total((Unit::Day, relative))?),
2115    ///     (span3, span3.total((Unit::Day, relative))?),
2116    /// ];
2117    /// spans.sort_by(|&(_, total1), &(_, total2)| total1.total_cmp(&total2));
2118    /// assert_eq!(
2119    ///     spans.map(|(sp, _)| sp.fieldwise()),
2120    ///     [span3.fieldwise(), span1.fieldwise(), span2.fieldwise()],
2121    /// );
2122    ///
2123    /// # Ok::<(), Box<dyn std::error::Error>>(())
2124    /// ```
2125    #[inline]
2126    pub fn total<'a, T: Into<SpanTotal<'a>>>(
2127        &self,
2128        options: T,
2129    ) -> Result<f64, Error> {
2130        let options: SpanTotal<'_> = options.into();
2131        options.total(*self)
2132    }
2133
2134    /// Returns a new span that is balanced and rounded.
2135    ///
2136    /// Rounding a span has a number of parameters, all of which are optional.
2137    /// When no parameters are given, then no rounding or balancing is done,
2138    /// and the span as given is returned. That is, it's a no-op.
2139    ///
2140    /// The parameters are, in brief:
2141    ///
2142    /// * [`SpanRound::largest`] sets the largest [`Unit`] that is allowed to
2143    /// be non-zero in the span returned. When _only_ the largest unit is set,
2144    /// rounding itself doesn't occur and instead the span is merely balanced.
2145    /// * [`SpanRound::smallest`] sets the smallest [`Unit`] that is allowed to
2146    /// be non-zero in the span returned. By default, it is set to
2147    /// [`Unit::Nanosecond`], i.e., no rounding occurs. When the smallest unit
2148    /// is set to something bigger than nanoseconds, then the non-zero units
2149    /// in the span smaller than the smallest unit are used to determine how
2150    /// the span should be rounded. For example, rounding `1 hour 59 minutes`
2151    /// to the nearest hour using the default rounding mode would produce
2152    /// `2 hours`.
2153    /// * [`SpanRound::mode`] determines how to handle the remainder when
2154    /// rounding. The default is [`RoundMode::HalfExpand`], which corresponds
2155    /// to how you were taught to round in school. Alternative modes, like
2156    /// [`RoundMode::Trunc`], exist too. For example, a truncating rounding of
2157    /// `1 hour 59 minutes` to the nearest hour would produce `1 hour`.
2158    /// * [`SpanRound::increment`] sets the rounding granularity to use for
2159    /// the configured smallest unit. For example, if the smallest unit is
2160    /// minutes and the increment is 5, then the span returned will always have
2161    /// its minute units set to a multiple of `5`.
2162    /// * [`SpanRound::relative`] sets the datetime from which to interpret the
2163    /// span. This is required when rounding spans with calendar units (years,
2164    /// months or weeks). When a relative datetime is time zone aware, then
2165    /// rounding accounts for the fact that not all days are 24 hours long.
2166    /// When a relative datetime is omitted or is civil (not time zone aware),
2167    /// then days are always 24 hours long.
2168    ///
2169    /// # Constructing a [`SpanRound`]
2170    ///
2171    /// This routine accepts anything that implements `Into<SpanRound>`. There
2172    /// are a few key trait implementations that make this convenient:
2173    ///
2174    /// * `From<Unit> for SpanRound` will construct a rounding configuration
2175    /// where the smallest unit is set to the one given.
2176    /// * `From<(Unit, i64)> for SpanRound` will construct a rounding
2177    /// configuration where the smallest unit and the rounding increment are
2178    /// set to the ones given.
2179    ///
2180    /// To set other options (like the largest unit, the rounding mode and the
2181    /// relative datetime), one must explicitly create a `SpanRound` and pass
2182    /// it to this routine.
2183    ///
2184    /// # Errors
2185    ///
2186    /// In general, there are two main ways for rounding to fail: an improper
2187    /// configuration like trying to round a span with calendar units but
2188    /// without a relative datetime, or when overflow occurs. Overflow can
2189    /// occur when the span, added to the relative datetime if given, would
2190    /// exceed the minimum or maximum datetime values. Overflow can also occur
2191    /// if the span is too big to fit into the requested unit configuration.
2192    /// For example, a span like `19_998.years()` cannot be represented with a
2193    /// 64-bit integer number of nanoseconds.
2194    ///
2195    /// Callers may use [`SpanArithmetic::days_are_24_hours`] as a special
2196    /// marker instead of providing a relative civil date to indicate that
2197    /// all days should be 24 hours long. This also results in treating all
2198    /// weeks as seven 24 hour days (168 hours).
2199    ///
2200    /// # Example: balancing
2201    ///
2202    /// This example demonstrates balancing, not rounding. And in particular,
2203    /// this example shows how to balance a span as much as possible (i.e.,
2204    /// with units of hours or smaller) without needing to specify a relative
2205    /// datetime:
2206    ///
2207    /// ```
2208    /// use jiff::{SpanRound, ToSpan, Unit};
2209    ///
2210    /// let span = 123_456_789_123_456_789i64.nanoseconds();
2211    /// assert_eq!(
2212    ///     span.round(SpanRound::new().largest(Unit::Hour))?.fieldwise(),
2213    ///     34_293.hours().minutes(33).seconds(9)
2214    ///         .milliseconds(123).microseconds(456).nanoseconds(789),
2215    /// );
2216    ///
2217    /// # Ok::<(), Box<dyn std::error::Error>>(())
2218    /// ```
2219    ///
2220    /// Or you can opt into invariant 24-hour days (and 7-day weeks) without a
2221    /// relative date with [`SpanRound::days_are_24_hours`]:
2222    ///
2223    /// ```
2224    /// use jiff::{SpanRound, ToSpan, Unit};
2225    ///
2226    /// let span = 123_456_789_123_456_789i64.nanoseconds();
2227    /// assert_eq!(
2228    ///     span.round(
2229    ///         SpanRound::new().largest(Unit::Day).days_are_24_hours(),
2230    ///     )?.fieldwise(),
2231    ///     1_428.days()
2232    ///         .hours(21).minutes(33).seconds(9)
2233    ///         .milliseconds(123).microseconds(456).nanoseconds(789),
2234    /// );
2235    ///
2236    /// # Ok::<(), Box<dyn std::error::Error>>(())
2237    /// ```
2238    ///
2239    /// # Example: balancing and rounding
2240    ///
2241    /// This example is like the one before it, but where we round to the
2242    /// nearest second:
2243    ///
2244    /// ```
2245    /// use jiff::{SpanRound, ToSpan, Unit};
2246    ///
2247    /// let span = 123_456_789_123_456_789i64.nanoseconds();
2248    /// assert_eq!(
2249    ///     span.round(SpanRound::new().largest(Unit::Hour).smallest(Unit::Second))?,
2250    ///     34_293.hours().minutes(33).seconds(9).fieldwise(),
2251    /// );
2252    ///
2253    /// # Ok::<(), Box<dyn std::error::Error>>(())
2254    /// ```
2255    ///
2256    /// Or, just rounding to the nearest hour can make use of the
2257    /// `From<Unit> for SpanRound` trait implementation:
2258    ///
2259    /// ```
2260    /// use jiff::{ToSpan, Unit};
2261    ///
2262    /// let span = 123_456_789_123_456_789i64.nanoseconds();
2263    /// assert_eq!(span.round(Unit::Hour)?, 34_294.hours().fieldwise());
2264    ///
2265    /// # Ok::<(), Box<dyn std::error::Error>>(())
2266    /// ```
2267    ///
2268    /// # Example: balancing with a relative datetime
2269    ///
2270    /// Even with calendar units, so long as a relative datetime is provided,
2271    /// it's easy to turn days into bigger units:
2272    ///
2273    /// ```
2274    /// use jiff::{civil::date, SpanRound, ToSpan, Unit};
2275    ///
2276    /// let span = 1_000.days();
2277    /// let relative = date(2000, 1, 1);
2278    /// let options = SpanRound::new().largest(Unit::Year).relative(relative);
2279    /// assert_eq!(span.round(options)?, 2.years().months(8).days(26).fieldwise());
2280    ///
2281    /// # Ok::<(), Box<dyn std::error::Error>>(())
2282    /// ```
2283    ///
2284    /// # Example: round to the nearest half-hour
2285    ///
2286    /// ```
2287    /// use jiff::{Span, ToSpan, Unit};
2288    ///
2289    /// let span: Span = "PT23h50m3.123s".parse()?;
2290    /// assert_eq!(span.round((Unit::Minute, 30))?, 24.hours().fieldwise());
2291    ///
2292    /// # Ok::<(), Box<dyn std::error::Error>>(())
2293    /// ```
2294    ///
2295    /// # Example: yearly quarters in a span
2296    ///
2297    /// This example shows how to find how many full 3 month quarters are in a
2298    /// particular span of time.
2299    ///
2300    /// ```
2301    /// use jiff::{civil::date, RoundMode, SpanRound, ToSpan, Unit};
2302    ///
2303    /// let span1 = 10.months().days(15);
2304    /// let round = SpanRound::new()
2305    ///     .smallest(Unit::Month)
2306    ///     .increment(3)
2307    ///     .mode(RoundMode::Trunc)
2308    ///     // A relative datetime must be provided when
2309    ///     // rounding involves calendar units.
2310    ///     .relative(date(2024, 1, 1));
2311    /// let span2 = span1.round(round)?;
2312    /// assert_eq!(span2.get_months() / 3, 3);
2313    ///
2314    /// # Ok::<(), Box<dyn std::error::Error>>(())
2315    /// ```
2316    #[inline]
2317    pub fn round<'a, R: Into<SpanRound<'a>>>(
2318        self,
2319        options: R,
2320    ) -> Result<Span, Error> {
2321        let options: SpanRound<'a> = options.into();
2322        options.round(self)
2323    }
2324
2325    /// Converts a `Span` to a [`SignedDuration`] relative to the date given.
2326    ///
2327    /// In most cases, it is unlikely that you'll need to use this routine to
2328    /// convert a `Span` to a `SignedDuration`. Namely, by default:
2329    ///
2330    /// * [`Zoned::until`] guarantees that the biggest non-zero unit is hours.
2331    /// * [`Timestamp::until`] guarantees that the biggest non-zero unit is
2332    /// seconds.
2333    /// * [`DateTime::until`] guarantees that the biggest non-zero unit is
2334    /// days.
2335    /// * [`Date::until`] guarantees that the biggest non-zero unit is days.
2336    /// * [`Time::until`] guarantees that the biggest non-zero unit is hours.
2337    ///
2338    /// In the above, only [`DateTime::until`] and [`Date::until`] return
2339    /// calendar units by default. In which case, one may pass
2340    /// [`SpanRelativeTo::days_are_24_hours`] or an actual relative date to
2341    /// resolve the length of a day.
2342    ///
2343    /// Of course, any of the above can be changed by asking, for example,
2344    /// `Zoned::until` to return units up to years.
2345    ///
2346    /// # Errors
2347    ///
2348    /// This returns an error if adding this span to the date given results in
2349    /// overflow. This can also return an error if one uses
2350    /// [`SpanRelativeTo::days_are_24_hours`] with a `Span` that has non-zero
2351    /// units greater than weeks.
2352    ///
2353    /// # Example: converting a span with calendar units to a `SignedDuration`
2354    ///
2355    /// This compares the number of seconds in a non-leap year with a leap
2356    /// year:
2357    ///
2358    /// ```
2359    /// use jiff::{civil::date, SignedDuration, ToSpan};
2360    ///
2361    /// let span = 1.year();
2362    ///
2363    /// let duration = span.to_duration(date(2024, 1, 1))?;
2364    /// assert_eq!(duration, SignedDuration::from_secs(31_622_400));
2365    /// let duration = span.to_duration(date(2023, 1, 1))?;
2366    /// assert_eq!(duration, SignedDuration::from_secs(31_536_000));
2367    ///
2368    /// # Ok::<(), Box<dyn std::error::Error>>(())
2369    /// ```
2370    ///
2371    /// # Example: converting a span without a relative datetime
2372    ///
2373    /// If for some reason it doesn't make sense to include a
2374    /// relative datetime, you can use this routine to convert a
2375    /// `Span` with units up to weeks to a `SignedDuration` via the
2376    /// [`SpanRelativeTo::days_are_24_hours`] marker:
2377    ///
2378    /// ```
2379    /// use jiff::{civil::date, SignedDuration, SpanRelativeTo, ToSpan};
2380    ///
2381    /// let span = 1.week().days(1);
2382    ///
2383    /// let duration = span.to_duration(SpanRelativeTo::days_are_24_hours())?;
2384    /// assert_eq!(duration, SignedDuration::from_hours(192));
2385    ///
2386    /// # Ok::<(), Box<dyn std::error::Error>>(())
2387    /// ```
2388    #[inline]
2389    pub fn to_duration<'a, R: Into<SpanRelativeTo<'a>>>(
2390        &self,
2391        relative: R,
2392    ) -> Result<SignedDuration, Error> {
2393        let max_unit = self.largest_unit();
2394        let relative: SpanRelativeTo<'a> = relative.into();
2395        let Some(result) = relative.to_relative(max_unit).transpose() else {
2396            return Ok(self.to_duration_invariant());
2397        };
2398        let relspan = result
2399            .and_then(|r| r.into_relative_span(Unit::Second, *self))
2400            .with_context(|| {
2401                err!(
2402                    "could not compute normalized relative span \
2403                     from datetime {relative} and span {self}",
2404                    relative = relative.kind,
2405                )
2406            })?;
2407        debug_assert!(relspan.span.largest_unit() <= Unit::Second);
2408        Ok(relspan.span.to_duration_invariant())
2409    }
2410
2411    /// Converts an entirely invariant span to a `SignedDuration`.
2412    ///
2413    /// Callers must ensure that this span has no units greater than weeks.
2414    /// If it does have non-zero units of days or weeks, then every day is
2415    /// considered 24 hours and every week 7 days. Generally speaking, callers
2416    /// should also ensure that if this span does have non-zero day/week units,
2417    /// then callers have either provided a civil relative date or the special
2418    /// `SpanRelativeTo::days_are_24_hours()` marker.
2419    #[inline]
2420    pub(crate) fn to_duration_invariant(&self) -> SignedDuration {
2421        // This guarantees, at compile time, that a maximal invariant Span
2422        // (that is, all units are days or lower and all units are set to their
2423        // maximum values) will still balance out to a number of seconds that
2424        // fits into a `i64`. This in turn implies that a `SignedDuration` can
2425        // represent all possible invariant positive spans.
2426        const _FITS_IN_U64: () = {
2427            debug_assert!(
2428                i64::MAX as i128
2429                    > ((t::SpanWeeks::MAX
2430                        * t::SECONDS_PER_CIVIL_WEEK.bound())
2431                        + (t::SpanDays::MAX
2432                            * t::SECONDS_PER_CIVIL_DAY.bound())
2433                        + (t::SpanHours::MAX * t::SECONDS_PER_HOUR.bound())
2434                        + (t::SpanMinutes::MAX
2435                            * t::SECONDS_PER_MINUTE.bound())
2436                        + t::SpanSeconds::MAX
2437                        + (t::SpanMilliseconds::MAX
2438                            / t::MILLIS_PER_SECOND.bound())
2439                        + (t::SpanMicroseconds::MAX
2440                            / t::MICROS_PER_SECOND.bound())
2441                        + (t::SpanNanoseconds::MAX
2442                            / t::NANOS_PER_SECOND.bound())),
2443            );
2444            ()
2445        };
2446
2447        let nanos = self.to_invariant_nanoseconds();
2448        debug_assert!(
2449            self.largest_unit() <= Unit::Week,
2450            "units must be weeks or lower"
2451        );
2452
2453        let seconds = nanos / t::NANOS_PER_SECOND;
2454        let seconds = i64::from(seconds);
2455        let subsec_nanos = nanos % t::NANOS_PER_SECOND;
2456        // OK because % 1_000_000_000 above guarantees that the result fits
2457        // in a i32.
2458        let subsec_nanos = i32::try_from(subsec_nanos).unwrap();
2459
2460        // SignedDuration::new can panic if |subsec_nanos| >= 1_000_000_000
2461        // and seconds == {i64::MIN,i64::MAX}. But this can never happen
2462        // because we guaranteed by construction above that |subsec_nanos| <
2463        // 1_000_000_000.
2464        SignedDuration::new(seconds, subsec_nanos)
2465    }
2466}
2467
2468/// Crate internal APIs that operate on ranged integer types.
2469impl Span {
2470    #[inline]
2471    pub(crate) fn years_ranged(self, years: impl RInto<t::SpanYears>) -> Span {
2472        let years = years.rinto();
2473        let mut span = Span { years: years.abs(), ..self };
2474        span.sign = self.resign(years, &span);
2475        span.units = span.units.set(Unit::Year, years == 0);
2476        span
2477    }
2478
2479    #[inline]
2480    pub(crate) fn months_ranged(
2481        self,
2482        months: impl RInto<t::SpanMonths>,
2483    ) -> Span {
2484        let months = months.rinto();
2485        let mut span = Span { months: months.abs(), ..self };
2486        span.sign = self.resign(months, &span);
2487        span.units = span.units.set(Unit::Month, months == 0);
2488        span
2489    }
2490
2491    #[inline]
2492    pub(crate) fn weeks_ranged(self, weeks: impl RInto<t::SpanWeeks>) -> Span {
2493        let weeks = weeks.rinto();
2494        let mut span = Span { weeks: weeks.abs(), ..self };
2495        span.sign = self.resign(weeks, &span);
2496        span.units = span.units.set(Unit::Week, weeks == 0);
2497        span
2498    }
2499
2500    #[inline]
2501    pub(crate) fn days_ranged(self, days: impl RInto<t::SpanDays>) -> Span {
2502        let days = days.rinto();
2503        let mut span = Span { days: days.abs(), ..self };
2504        span.sign = self.resign(days, &span);
2505        span.units = span.units.set(Unit::Day, days == 0);
2506        span
2507    }
2508
2509    #[inline]
2510    pub(crate) fn hours_ranged(self, hours: impl RInto<t::SpanHours>) -> Span {
2511        let hours = hours.rinto();
2512        let mut span = Span { hours: hours.abs(), ..self };
2513        span.sign = self.resign(hours, &span);
2514        span.units = span.units.set(Unit::Hour, hours == 0);
2515        span
2516    }
2517
2518    #[inline]
2519    pub(crate) fn minutes_ranged(
2520        self,
2521        minutes: impl RInto<t::SpanMinutes>,
2522    ) -> Span {
2523        let minutes = minutes.rinto();
2524        let mut span = Span { minutes: minutes.abs(), ..self };
2525        span.sign = self.resign(minutes, &span);
2526        span.units = span.units.set(Unit::Minute, minutes == 0);
2527        span
2528    }
2529
2530    #[inline]
2531    pub(crate) fn seconds_ranged(
2532        self,
2533        seconds: impl RInto<t::SpanSeconds>,
2534    ) -> Span {
2535        let seconds = seconds.rinto();
2536        let mut span = Span { seconds: seconds.abs(), ..self };
2537        span.sign = self.resign(seconds, &span);
2538        span.units = span.units.set(Unit::Second, seconds == 0);
2539        span
2540    }
2541
2542    #[inline]
2543    fn milliseconds_ranged(
2544        self,
2545        milliseconds: impl RInto<t::SpanMilliseconds>,
2546    ) -> Span {
2547        let milliseconds = milliseconds.rinto();
2548        let mut span = Span { milliseconds: milliseconds.abs(), ..self };
2549        span.sign = self.resign(milliseconds, &span);
2550        span.units = span.units.set(Unit::Millisecond, milliseconds == 0);
2551        span
2552    }
2553
2554    #[inline]
2555    fn microseconds_ranged(
2556        self,
2557        microseconds: impl RInto<t::SpanMicroseconds>,
2558    ) -> Span {
2559        let microseconds = microseconds.rinto();
2560        let mut span = Span { microseconds: microseconds.abs(), ..self };
2561        span.sign = self.resign(microseconds, &span);
2562        span.units = span.units.set(Unit::Microsecond, microseconds == 0);
2563        span
2564    }
2565
2566    #[inline]
2567    pub(crate) fn nanoseconds_ranged(
2568        self,
2569        nanoseconds: impl RInto<t::SpanNanoseconds>,
2570    ) -> Span {
2571        let nanoseconds = nanoseconds.rinto();
2572        let mut span = Span { nanoseconds: nanoseconds.abs(), ..self };
2573        span.sign = self.resign(nanoseconds, &span);
2574        span.units = span.units.set(Unit::Nanosecond, nanoseconds == 0);
2575        span
2576    }
2577
2578    #[inline]
2579    fn try_years_ranged(
2580        self,
2581        years: impl TryRInto<t::SpanYears>,
2582    ) -> Result<Span, Error> {
2583        let years = years.try_rinto("years")?;
2584        Ok(self.years_ranged(years))
2585    }
2586
2587    #[inline]
2588    fn try_months_ranged(
2589        self,
2590        months: impl TryRInto<t::SpanMonths>,
2591    ) -> Result<Span, Error> {
2592        let months = months.try_rinto("months")?;
2593        Ok(self.months_ranged(months))
2594    }
2595
2596    #[inline]
2597    fn try_weeks_ranged(
2598        self,
2599        weeks: impl TryRInto<t::SpanWeeks>,
2600    ) -> Result<Span, Error> {
2601        let weeks = weeks.try_rinto("weeks")?;
2602        Ok(self.weeks_ranged(weeks))
2603    }
2604
2605    #[inline]
2606    fn try_days_ranged(
2607        self,
2608        days: impl TryRInto<t::SpanDays>,
2609    ) -> Result<Span, Error> {
2610        let days = days.try_rinto("days")?;
2611        Ok(self.days_ranged(days))
2612    }
2613
2614    #[inline]
2615    pub(crate) fn try_hours_ranged(
2616        self,
2617        hours: impl TryRInto<t::SpanHours>,
2618    ) -> Result<Span, Error> {
2619        let hours = hours.try_rinto("hours")?;
2620        Ok(self.hours_ranged(hours))
2621    }
2622
2623    #[inline]
2624    pub(crate) fn try_minutes_ranged(
2625        self,
2626        minutes: impl TryRInto<t::SpanMinutes>,
2627    ) -> Result<Span, Error> {
2628        let minutes = minutes.try_rinto("minutes")?;
2629        Ok(self.minutes_ranged(minutes))
2630    }
2631
2632    #[inline]
2633    pub(crate) fn try_seconds_ranged(
2634        self,
2635        seconds: impl TryRInto<t::SpanSeconds>,
2636    ) -> Result<Span, Error> {
2637        let seconds = seconds.try_rinto("seconds")?;
2638        Ok(self.seconds_ranged(seconds))
2639    }
2640
2641    #[inline]
2642    pub(crate) fn try_milliseconds_ranged(
2643        self,
2644        milliseconds: impl TryRInto<t::SpanMilliseconds>,
2645    ) -> Result<Span, Error> {
2646        let milliseconds = milliseconds.try_rinto("milliseconds")?;
2647        Ok(self.milliseconds_ranged(milliseconds))
2648    }
2649
2650    #[inline]
2651    pub(crate) fn try_microseconds_ranged(
2652        self,
2653        microseconds: impl TryRInto<t::SpanMicroseconds>,
2654    ) -> Result<Span, Error> {
2655        let microseconds = microseconds.try_rinto("microseconds")?;
2656        Ok(self.microseconds_ranged(microseconds))
2657    }
2658
2659    #[inline]
2660    pub(crate) fn try_nanoseconds_ranged(
2661        self,
2662        nanoseconds: impl TryRInto<t::SpanNanoseconds>,
2663    ) -> Result<Span, Error> {
2664        let nanoseconds = nanoseconds.try_rinto("nanoseconds")?;
2665        Ok(self.nanoseconds_ranged(nanoseconds))
2666    }
2667
2668    #[inline]
2669    pub(crate) fn try_units_ranged(
2670        self,
2671        unit: Unit,
2672        value: impl RInto<NoUnits>,
2673    ) -> Result<Span, Error> {
2674        let value = value.rinto();
2675        match unit {
2676            Unit::Year => self.try_years_ranged(value),
2677            Unit::Month => self.try_months_ranged(value),
2678            Unit::Week => self.try_weeks_ranged(value),
2679            Unit::Day => self.try_days_ranged(value),
2680            Unit::Hour => self.try_hours_ranged(value),
2681            Unit::Minute => self.try_minutes_ranged(value),
2682            Unit::Second => self.try_seconds_ranged(value),
2683            Unit::Millisecond => self.try_milliseconds_ranged(value),
2684            Unit::Microsecond => self.try_microseconds_ranged(value),
2685            Unit::Nanosecond => self.try_nanoseconds_ranged(value),
2686        }
2687    }
2688
2689    #[inline]
2690    pub(crate) fn get_years_ranged(&self) -> t::SpanYears {
2691        self.years * self.sign
2692    }
2693
2694    #[inline]
2695    pub(crate) fn get_months_ranged(&self) -> t::SpanMonths {
2696        self.months * self.sign
2697    }
2698
2699    #[inline]
2700    pub(crate) fn get_weeks_ranged(&self) -> t::SpanWeeks {
2701        self.weeks * self.sign
2702    }
2703
2704    #[inline]
2705    pub(crate) fn get_days_ranged(&self) -> t::SpanDays {
2706        self.days * self.sign
2707    }
2708
2709    #[inline]
2710    pub(crate) fn get_hours_ranged(&self) -> t::SpanHours {
2711        self.hours * self.sign
2712    }
2713
2714    #[inline]
2715    pub(crate) fn get_minutes_ranged(&self) -> t::SpanMinutes {
2716        self.minutes * self.sign
2717    }
2718
2719    #[inline]
2720    pub(crate) fn get_seconds_ranged(&self) -> t::SpanSeconds {
2721        self.seconds * self.sign
2722    }
2723
2724    #[inline]
2725    pub(crate) fn get_milliseconds_ranged(&self) -> t::SpanMilliseconds {
2726        self.milliseconds * self.sign
2727    }
2728
2729    #[inline]
2730    pub(crate) fn get_microseconds_ranged(&self) -> t::SpanMicroseconds {
2731        self.microseconds * self.sign
2732    }
2733
2734    #[inline]
2735    pub(crate) fn get_nanoseconds_ranged(&self) -> t::SpanNanoseconds {
2736        self.nanoseconds * self.sign
2737    }
2738
2739    #[inline]
2740    fn get_sign_ranged(&self) -> ri8<-1, 1> {
2741        self.sign
2742    }
2743
2744    #[inline]
2745    fn get_units_ranged(&self, unit: Unit) -> NoUnits {
2746        match unit {
2747            Unit::Year => self.get_years_ranged().rinto(),
2748            Unit::Month => self.get_months_ranged().rinto(),
2749            Unit::Week => self.get_weeks_ranged().rinto(),
2750            Unit::Day => self.get_days_ranged().rinto(),
2751            Unit::Hour => self.get_hours_ranged().rinto(),
2752            Unit::Minute => self.get_minutes_ranged().rinto(),
2753            Unit::Second => self.get_seconds_ranged().rinto(),
2754            Unit::Millisecond => self.get_milliseconds_ranged().rinto(),
2755            Unit::Microsecond => self.get_microseconds_ranged().rinto(),
2756            Unit::Nanosecond => self.get_nanoseconds_ranged().rinto(),
2757        }
2758    }
2759}
2760
2761/// Crate internal helper routines.
2762impl Span {
2763    /// Converts the given number of nanoseconds to a `Span` whose units do not
2764    /// exceed `largest`.
2765    ///
2766    /// Note that `largest` is capped at `Unit::Week`. Note though that if
2767    /// any unit greater than `Unit::Week` is given, then it is treated as
2768    /// `Unit::Day`. The only way to get weeks in the `Span` returned is to
2769    /// specifically request `Unit::Week`.
2770    ///
2771    /// And also note that days in this context are civil days. That is, they
2772    /// are always 24 hours long. Callers needing to deal with variable length
2773    /// days should do so outside of this routine and should not provide a
2774    /// `largest` unit bigger than `Unit::Hour`.
2775    pub(crate) fn from_invariant_nanoseconds(
2776        largest: Unit,
2777        nanos: impl RInto<NoUnits128>,
2778    ) -> Result<Span, Error> {
2779        let nanos = nanos.rinto();
2780        let mut span = Span::new();
2781        match largest {
2782            Unit::Week => {
2783                let micros = nanos.div_ceil(t::NANOS_PER_MICRO);
2784                span = span.try_nanoseconds_ranged(
2785                    nanos.rem_ceil(t::NANOS_PER_MICRO),
2786                )?;
2787                let millis = micros.div_ceil(t::MICROS_PER_MILLI);
2788                span = span.try_microseconds_ranged(
2789                    micros.rem_ceil(t::MICROS_PER_MILLI),
2790                )?;
2791                let secs = millis.div_ceil(t::MILLIS_PER_SECOND);
2792                span = span.try_milliseconds_ranged(
2793                    millis.rem_ceil(t::MILLIS_PER_SECOND),
2794                )?;
2795                let mins = secs.div_ceil(t::SECONDS_PER_MINUTE);
2796                span = span.try_seconds_ranged(
2797                    secs.rem_ceil(t::SECONDS_PER_MINUTE),
2798                )?;
2799                let hours = mins.div_ceil(t::MINUTES_PER_HOUR);
2800                span = span
2801                    .try_minutes_ranged(mins.rem_ceil(t::MINUTES_PER_HOUR))?;
2802                let days = hours.div_ceil(t::HOURS_PER_CIVIL_DAY);
2803                span = span.try_hours_ranged(
2804                    hours.rem_ceil(t::HOURS_PER_CIVIL_DAY),
2805                )?;
2806                let weeks = days.div_ceil(t::DAYS_PER_CIVIL_WEEK);
2807                span = span
2808                    .try_days_ranged(days.rem_ceil(t::DAYS_PER_CIVIL_WEEK))?;
2809                span = span.try_weeks_ranged(weeks)?;
2810                Ok(span)
2811            }
2812            Unit::Year | Unit::Month | Unit::Day => {
2813                // Unit::Year | Unit::Month | Unit::Week | Unit::Day => {
2814                let micros = nanos.div_ceil(t::NANOS_PER_MICRO);
2815                span = span.try_nanoseconds_ranged(
2816                    nanos.rem_ceil(t::NANOS_PER_MICRO),
2817                )?;
2818                let millis = micros.div_ceil(t::MICROS_PER_MILLI);
2819                span = span.try_microseconds_ranged(
2820                    micros.rem_ceil(t::MICROS_PER_MILLI),
2821                )?;
2822                let secs = millis.div_ceil(t::MILLIS_PER_SECOND);
2823                span = span.try_milliseconds_ranged(
2824                    millis.rem_ceil(t::MILLIS_PER_SECOND),
2825                )?;
2826                let mins = secs.div_ceil(t::SECONDS_PER_MINUTE);
2827                span = span.try_seconds_ranged(
2828                    secs.rem_ceil(t::SECONDS_PER_MINUTE),
2829                )?;
2830                let hours = mins.div_ceil(t::MINUTES_PER_HOUR);
2831                span = span
2832                    .try_minutes_ranged(mins.rem_ceil(t::MINUTES_PER_HOUR))?;
2833                let days = hours.div_ceil(t::HOURS_PER_CIVIL_DAY);
2834                span = span.try_hours_ranged(
2835                    hours.rem_ceil(t::HOURS_PER_CIVIL_DAY),
2836                )?;
2837                span = span.try_days_ranged(days)?;
2838                Ok(span)
2839            }
2840            Unit::Hour => {
2841                let micros = nanos.div_ceil(t::NANOS_PER_MICRO);
2842                span = span.try_nanoseconds_ranged(
2843                    nanos.rem_ceil(t::NANOS_PER_MICRO),
2844                )?;
2845                let millis = micros.div_ceil(t::MICROS_PER_MILLI);
2846                span = span.try_microseconds_ranged(
2847                    micros.rem_ceil(t::MICROS_PER_MILLI),
2848                )?;
2849                let secs = millis.div_ceil(t::MILLIS_PER_SECOND);
2850                span = span.try_milliseconds_ranged(
2851                    millis.rem_ceil(t::MILLIS_PER_SECOND),
2852                )?;
2853                let mins = secs.div_ceil(t::SECONDS_PER_MINUTE);
2854                span = span.try_seconds_ranged(
2855                    secs.rem_ceil(t::SECONDS_PER_MINUTE),
2856                )?;
2857                let hours = mins.div_ceil(t::MINUTES_PER_HOUR);
2858                span = span
2859                    .try_minutes_ranged(mins.rem_ceil(t::MINUTES_PER_HOUR))?;
2860                span = span.try_hours_ranged(hours)?;
2861                Ok(span)
2862            }
2863            Unit::Minute => {
2864                let micros = nanos.div_ceil(t::NANOS_PER_MICRO);
2865                span = span.try_nanoseconds_ranged(
2866                    nanos.rem_ceil(t::NANOS_PER_MICRO),
2867                )?;
2868                let millis = micros.div_ceil(t::MICROS_PER_MILLI);
2869                span = span.try_microseconds_ranged(
2870                    micros.rem_ceil(t::MICROS_PER_MILLI),
2871                )?;
2872                let secs = millis.div_ceil(t::MILLIS_PER_SECOND);
2873                span = span.try_milliseconds_ranged(
2874                    millis.rem_ceil(t::MILLIS_PER_SECOND),
2875                )?;
2876                let mins = secs.div_ceil(t::SECONDS_PER_MINUTE);
2877                span =
2878                    span.try_seconds(secs.rem_ceil(t::SECONDS_PER_MINUTE))?;
2879                span = span.try_minutes_ranged(mins)?;
2880                Ok(span)
2881            }
2882            Unit::Second => {
2883                let micros = nanos.div_ceil(t::NANOS_PER_MICRO);
2884                span = span.try_nanoseconds_ranged(
2885                    nanos.rem_ceil(t::NANOS_PER_MICRO),
2886                )?;
2887                let millis = micros.div_ceil(t::MICROS_PER_MILLI);
2888                span = span.try_microseconds_ranged(
2889                    micros.rem_ceil(t::MICROS_PER_MILLI),
2890                )?;
2891                let secs = millis.div_ceil(t::MILLIS_PER_SECOND);
2892                span = span.try_milliseconds_ranged(
2893                    millis.rem_ceil(t::MILLIS_PER_SECOND),
2894                )?;
2895                span = span.try_seconds_ranged(secs)?;
2896                Ok(span)
2897            }
2898            Unit::Millisecond => {
2899                let micros = nanos.div_ceil(t::NANOS_PER_MICRO);
2900                span = span.try_nanoseconds_ranged(
2901                    nanos.rem_ceil(t::NANOS_PER_MICRO),
2902                )?;
2903                let millis = micros.div_ceil(t::MICROS_PER_MILLI);
2904                span = span.try_microseconds_ranged(
2905                    micros.rem_ceil(t::MICROS_PER_MILLI),
2906                )?;
2907                span = span.try_milliseconds_ranged(millis)?;
2908                Ok(span)
2909            }
2910            Unit::Microsecond => {
2911                let micros = nanos.div_ceil(t::NANOS_PER_MICRO);
2912                span = span.try_nanoseconds_ranged(
2913                    nanos.rem_ceil(t::NANOS_PER_MICRO),
2914                )?;
2915                span = span.try_microseconds_ranged(micros)?;
2916                Ok(span)
2917            }
2918            Unit::Nanosecond => {
2919                span = span.try_nanoseconds_ranged(nanos)?;
2920                Ok(span)
2921            }
2922        }
2923    }
2924
2925    /// Converts the non-variable units of this `Span` to a total number of
2926    /// nanoseconds.
2927    ///
2928    /// This includes days and weeks, even though they can be of irregular
2929    /// length during time zone transitions. If this applies, then callers
2930    /// should set the days and weeks to `0` before calling this routine.
2931    ///
2932    /// All units above weeks are always ignored.
2933    #[inline]
2934    pub(crate) fn to_invariant_nanoseconds(&self) -> NoUnits128 {
2935        let mut nanos = NoUnits128::rfrom(self.get_nanoseconds_ranged());
2936        nanos += NoUnits128::rfrom(self.get_microseconds_ranged())
2937            * t::NANOS_PER_MICRO;
2938        nanos += NoUnits128::rfrom(self.get_milliseconds_ranged())
2939            * t::NANOS_PER_MILLI;
2940        nanos +=
2941            NoUnits128::rfrom(self.get_seconds_ranged()) * t::NANOS_PER_SECOND;
2942        nanos +=
2943            NoUnits128::rfrom(self.get_minutes_ranged()) * t::NANOS_PER_MINUTE;
2944        nanos +=
2945            NoUnits128::rfrom(self.get_hours_ranged()) * t::NANOS_PER_HOUR;
2946        nanos +=
2947            NoUnits128::rfrom(self.get_days_ranged()) * t::NANOS_PER_CIVIL_DAY;
2948        nanos += NoUnits128::rfrom(self.get_weeks_ranged())
2949            * t::NANOS_PER_CIVIL_WEEK;
2950        nanos
2951    }
2952
2953    /// Converts the non-variable units of this `Span` to a total number of
2954    /// seconds if there is no fractional second component. Otherwise,
2955    /// `None` is returned.
2956    ///
2957    /// This is useful for short-circuiting in arithmetic operations when
2958    /// it's faster to only deal with seconds. And in particular, acknowledges
2959    /// that nanosecond precision durations are somewhat rare.
2960    ///
2961    /// This includes days and weeks, even though they can be of irregular
2962    /// length during time zone transitions. If this applies, then callers
2963    /// should set the days and weeks to `0` before calling this routine.
2964    ///
2965    /// All units above weeks are always ignored.
2966    #[inline]
2967    pub(crate) fn to_invariant_seconds(&self) -> Option<NoUnits> {
2968        if self.has_fractional_seconds() {
2969            return None;
2970        }
2971        let mut seconds = NoUnits::rfrom(self.get_seconds_ranged());
2972        seconds +=
2973            NoUnits::rfrom(self.get_minutes_ranged()) * t::SECONDS_PER_MINUTE;
2974        seconds +=
2975            NoUnits::rfrom(self.get_hours_ranged()) * t::SECONDS_PER_HOUR;
2976        seconds +=
2977            NoUnits::rfrom(self.get_days_ranged()) * t::SECONDS_PER_CIVIL_DAY;
2978        seconds += NoUnits::rfrom(self.get_weeks_ranged())
2979            * t::SECONDS_PER_CIVIL_WEEK;
2980        Some(seconds)
2981    }
2982
2983    /// Rebalances the invariant units (days or lower) on this span so that
2984    /// the largest possible non-zero unit is the one given.
2985    ///
2986    /// Units above day are ignored and dropped.
2987    ///
2988    /// If the given unit is greater than days, then it is treated as-if it
2989    /// were days.
2990    ///
2991    /// # Errors
2992    ///
2993    /// This can return an error in the case of lop-sided units. For example,
2994    /// if this span has maximal values for all units, then rebalancing is
2995    /// not possible because the number of days after balancing would exceed
2996    /// the limit.
2997    #[cfg(test)] // currently only used in zic parser?
2998    #[inline]
2999    pub(crate) fn rebalance(self, unit: Unit) -> Result<Span, Error> {
3000        Span::from_invariant_nanoseconds(unit, self.to_invariant_nanoseconds())
3001    }
3002
3003    /// Returns true if and only if this span has at least one non-zero
3004    /// fractional second unit.
3005    #[inline]
3006    pub(crate) fn has_fractional_seconds(&self) -> bool {
3007        self.milliseconds != 0
3008            || self.microseconds != 0
3009            || self.nanoseconds != 0
3010    }
3011
3012    /// Returns an equivalent span, but with all non-calendar (units below
3013    /// days) set to zero.
3014    #[inline(always)]
3015    pub(crate) fn only_calendar(self) -> Span {
3016        let mut span = self;
3017        span.hours = t::SpanHours::N::<0>();
3018        span.minutes = t::SpanMinutes::N::<0>();
3019        span.seconds = t::SpanSeconds::N::<0>();
3020        span.milliseconds = t::SpanMilliseconds::N::<0>();
3021        span.microseconds = t::SpanMicroseconds::N::<0>();
3022        span.nanoseconds = t::SpanNanoseconds::N::<0>();
3023        if span.sign != 0
3024            && span.years == 0
3025            && span.months == 0
3026            && span.weeks == 0
3027            && span.days == 0
3028        {
3029            span.sign = t::Sign::N::<0>();
3030        }
3031        span.units = span.units.only_calendar();
3032        span
3033    }
3034
3035    /// Returns an equivalent span, but with all calendar (units above
3036    /// hours) set to zero.
3037    #[inline(always)]
3038    pub(crate) fn only_time(self) -> Span {
3039        let mut span = self;
3040        span.years = t::SpanYears::N::<0>();
3041        span.months = t::SpanMonths::N::<0>();
3042        span.weeks = t::SpanWeeks::N::<0>();
3043        span.days = t::SpanDays::N::<0>();
3044        if span.sign != 0
3045            && span.hours == 0
3046            && span.minutes == 0
3047            && span.seconds == 0
3048            && span.milliseconds == 0
3049            && span.microseconds == 0
3050            && span.nanoseconds == 0
3051        {
3052            span.sign = t::Sign::N::<0>();
3053        }
3054        span.units = span.units.only_time();
3055        span
3056    }
3057
3058    /// Returns an equivalent span, but with all units greater than or equal to
3059    /// the one given set to zero.
3060    #[inline(always)]
3061    pub(crate) fn only_lower(self, unit: Unit) -> Span {
3062        let mut span = self;
3063        // Unit::Nanosecond is the minimum, so nothing can be smaller than it.
3064        if unit <= Unit::Microsecond {
3065            span = span.microseconds_ranged(C(0));
3066        }
3067        if unit <= Unit::Millisecond {
3068            span = span.milliseconds_ranged(C(0));
3069        }
3070        if unit <= Unit::Second {
3071            span = span.seconds_ranged(C(0));
3072        }
3073        if unit <= Unit::Minute {
3074            span = span.minutes_ranged(C(0));
3075        }
3076        if unit <= Unit::Hour {
3077            span = span.hours_ranged(C(0));
3078        }
3079        if unit <= Unit::Day {
3080            span = span.days_ranged(C(0));
3081        }
3082        if unit <= Unit::Week {
3083            span = span.weeks_ranged(C(0));
3084        }
3085        if unit <= Unit::Month {
3086            span = span.months_ranged(C(0));
3087        }
3088        if unit <= Unit::Year {
3089            span = span.years_ranged(C(0));
3090        }
3091        span
3092    }
3093
3094    /// Returns an equivalent span, but with all units less than the one given
3095    /// set to zero.
3096    #[inline(always)]
3097    pub(crate) fn without_lower(self, unit: Unit) -> Span {
3098        let mut span = self;
3099        if unit > Unit::Nanosecond {
3100            span = span.nanoseconds_ranged(C(0));
3101        }
3102        if unit > Unit::Microsecond {
3103            span = span.microseconds_ranged(C(0));
3104        }
3105        if unit > Unit::Millisecond {
3106            span = span.milliseconds_ranged(C(0));
3107        }
3108        if unit > Unit::Second {
3109            span = span.seconds_ranged(C(0));
3110        }
3111        if unit > Unit::Minute {
3112            span = span.minutes_ranged(C(0));
3113        }
3114        if unit > Unit::Hour {
3115            span = span.hours_ranged(C(0));
3116        }
3117        if unit > Unit::Day {
3118            span = span.days_ranged(C(0));
3119        }
3120        if unit > Unit::Week {
3121            span = span.weeks_ranged(C(0));
3122        }
3123        if unit > Unit::Month {
3124            span = span.months_ranged(C(0));
3125        }
3126        // Unit::Year is the max, so nothing can be bigger than it.
3127        span
3128    }
3129
3130    /// Returns an error corresponding to the smallest non-time non-zero unit.
3131    ///
3132    /// If all non-time units are zero, then this returns `None`.
3133    #[inline(always)]
3134    pub(crate) fn smallest_non_time_non_zero_unit_error(
3135        &self,
3136    ) -> Option<Error> {
3137        let non_time_unit = self.largest_calendar_unit()?;
3138        Some(err!(
3139            "operation can only be performed with units of hours \
3140             or smaller, but found non-zero {unit} units \
3141             (operations on `Timestamp`, `tz::Offset` and `civil::Time` \
3142              don't support calendar units in a `Span`)",
3143            unit = non_time_unit.singular(),
3144        ))
3145    }
3146
3147    /// Returns the largest non-zero calendar unit, or `None` if there are no
3148    /// non-zero calendar units.
3149    #[inline]
3150    pub(crate) fn largest_calendar_unit(&self) -> Option<Unit> {
3151        self.units().only_calendar().largest_unit()
3152    }
3153
3154    /// Returns the largest non-zero unit in this span.
3155    ///
3156    /// If all components of this span are zero, then `Unit::Nanosecond` is
3157    /// returned.
3158    #[inline]
3159    pub(crate) fn largest_unit(&self) -> Unit {
3160        self.units().largest_unit().unwrap_or(Unit::Nanosecond)
3161    }
3162
3163    /// Returns the set of units on this `Span`.
3164    #[inline]
3165    pub(crate) fn units(&self) -> UnitSet {
3166        self.units
3167    }
3168
3169    /// Returns a string containing the value of all non-zero fields.
3170    ///
3171    /// This is useful for debugging. Normally, this would be the "alternate"
3172    /// debug impl (perhaps), but that's what insta uses and I preferred having
3173    /// the friendly format used there since it is much more terse.
3174    #[cfg(feature = "alloc")]
3175    #[allow(dead_code)]
3176    pub(crate) fn debug(&self) -> alloc::string::String {
3177        use core::fmt::Write;
3178
3179        let mut buf = alloc::string::String::new();
3180        write!(buf, "Span {{ sign: {:?}, units: {:?}", self.sign, self.units)
3181            .unwrap();
3182        if self.years != 0 {
3183            write!(buf, ", years: {:?}", self.years).unwrap();
3184        }
3185        if self.months != 0 {
3186            write!(buf, ", months: {:?}", self.months).unwrap();
3187        }
3188        if self.weeks != 0 {
3189            write!(buf, ", weeks: {:?}", self.weeks).unwrap();
3190        }
3191        if self.days != 0 {
3192            write!(buf, ", days: {:?}", self.days).unwrap();
3193        }
3194        if self.hours != 0 {
3195            write!(buf, ", hours: {:?}", self.hours).unwrap();
3196        }
3197        if self.minutes != 0 {
3198            write!(buf, ", minutes: {:?}", self.minutes).unwrap();
3199        }
3200        if self.seconds != 0 {
3201            write!(buf, ", seconds: {:?}", self.seconds).unwrap();
3202        }
3203        if self.milliseconds != 0 {
3204            write!(buf, ", milliseconds: {:?}", self.milliseconds).unwrap();
3205        }
3206        if self.microseconds != 0 {
3207            write!(buf, ", microseconds: {:?}", self.microseconds).unwrap();
3208        }
3209        if self.nanoseconds != 0 {
3210            write!(buf, ", nanoseconds: {:?}", self.nanoseconds).unwrap();
3211        }
3212        write!(buf, " }}").unwrap();
3213        buf
3214    }
3215
3216    /// Given some new units to set on this span and the span updates with the
3217    /// new units, this determines the what the sign of `new` should be.
3218    #[inline]
3219    fn resign(&self, units: impl RInto<NoUnits>, new: &Span) -> Sign {
3220        let units = units.rinto();
3221        // Negative units anywhere always makes the entire span negative.
3222        if units < 0 {
3223            return Sign::N::<-1>();
3224        }
3225        let mut new_is_zero = new.sign == 0 && units == 0;
3226        // When `units == 0` and it was previously non-zero, then `new.sign`
3227        // won't be `0` and thus `new_is_zero` will be false when it should
3228        // be true. So in this case, we need to re-check all the units to set
3229        // the sign correctly.
3230        if units == 0 {
3231            new_is_zero = new.years == 0
3232                && new.months == 0
3233                && new.weeks == 0
3234                && new.days == 0
3235                && new.hours == 0
3236                && new.minutes == 0
3237                && new.seconds == 0
3238                && new.milliseconds == 0
3239                && new.microseconds == 0
3240                && new.nanoseconds == 0;
3241        }
3242        match (self.is_zero(), new_is_zero) {
3243            (_, true) => Sign::N::<0>(),
3244            (true, false) => units.signum().rinto(),
3245            // If the old and new span are both non-zero, and we know our new
3246            // units are not negative, then the sign remains unchanged.
3247            (false, false) => new.sign,
3248        }
3249    }
3250}
3251
3252impl Default for Span {
3253    #[inline]
3254    fn default() -> Span {
3255        Span {
3256            sign: ri8::N::<0>(),
3257            units: UnitSet::empty(),
3258            years: C(0).rinto(),
3259            months: C(0).rinto(),
3260            weeks: C(0).rinto(),
3261            days: C(0).rinto(),
3262            hours: C(0).rinto(),
3263            minutes: C(0).rinto(),
3264            seconds: C(0).rinto(),
3265            milliseconds: C(0).rinto(),
3266            microseconds: C(0).rinto(),
3267            nanoseconds: C(0).rinto(),
3268        }
3269    }
3270}
3271
3272impl core::fmt::Debug for Span {
3273    #[inline]
3274    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
3275        use crate::fmt::StdFmtWrite;
3276
3277        friendly::DEFAULT_SPAN_PRINTER
3278            .print_span(self, StdFmtWrite(f))
3279            .map_err(|_| core::fmt::Error)
3280    }
3281}
3282
3283impl core::fmt::Display for Span {
3284    #[inline]
3285    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
3286        use crate::fmt::StdFmtWrite;
3287
3288        if f.alternate() {
3289            friendly::DEFAULT_SPAN_PRINTER
3290                .print_span(self, StdFmtWrite(f))
3291                .map_err(|_| core::fmt::Error)
3292        } else {
3293            temporal::DEFAULT_SPAN_PRINTER
3294                .print_span(self, StdFmtWrite(f))
3295                .map_err(|_| core::fmt::Error)
3296        }
3297    }
3298}
3299
3300impl core::str::FromStr for Span {
3301    type Err = Error;
3302
3303    #[inline]
3304    fn from_str(string: &str) -> Result<Span, Error> {
3305        parse_iso_or_friendly(string.as_bytes())
3306    }
3307}
3308
3309impl core::ops::Neg for Span {
3310    type Output = Span;
3311
3312    #[inline]
3313    fn neg(self) -> Span {
3314        self.negate()
3315    }
3316}
3317
3318/// This multiplies each unit in a span by an integer.
3319///
3320/// This panics on overflow. For checked arithmetic, use [`Span::checked_mul`].
3321impl core::ops::Mul<i64> for Span {
3322    type Output = Span;
3323
3324    #[inline]
3325    fn mul(self, rhs: i64) -> Span {
3326        self.checked_mul(rhs)
3327            .expect("multiplying `Span` by a scalar overflowed")
3328    }
3329}
3330
3331/// This multiplies each unit in a span by an integer.
3332///
3333/// This panics on overflow. For checked arithmetic, use [`Span::checked_mul`].
3334impl core::ops::Mul<Span> for i64 {
3335    type Output = Span;
3336
3337    #[inline]
3338    fn mul(self, rhs: Span) -> Span {
3339        rhs.checked_mul(self)
3340            .expect("multiplying `Span` by a scalar overflowed")
3341    }
3342}
3343
3344/// Converts a `Span` to a [`std::time::Duration`].
3345///
3346/// Note that this assumes that days are always 24 hours long.
3347///
3348/// # Errors
3349///
3350/// This can fail for only two reasons:
3351///
3352/// * The span is negative. This is an error because a `std::time::Duration` is
3353///   unsigned.)
3354/// * The span has any non-zero units greater than hours. This is an error
3355///   because it's impossible to determine the length of, e.g., a month without
3356///   a reference date.
3357///
3358/// This can never result in overflow because a `Duration` can represent a
3359/// bigger span of time than `Span` when limited to units of hours or lower.
3360///
3361/// If you need to convert a `Span` to a `Duration` that has non-zero
3362/// units bigger than hours, then please use [`Span::to_duration`] with a
3363/// corresponding relative date.
3364///
3365/// # Example: maximal span
3366///
3367/// This example shows the maximum possible span using units of hours or
3368/// smaller, and the corresponding `Duration` value:
3369///
3370/// ```
3371/// use std::time::Duration;
3372///
3373/// use jiff::Span;
3374///
3375/// let sp = Span::new()
3376///     .hours(175_307_616)
3377///     .minutes(10_518_456_960i64)
3378///     .seconds(631_107_417_600i64)
3379///     .milliseconds(631_107_417_600_000i64)
3380///     .microseconds(631_107_417_600_000_000i64)
3381///     .nanoseconds(9_223_372_036_854_775_807i64);
3382/// let duration = Duration::try_from(sp)?;
3383/// assert_eq!(duration, Duration::new(3_164_760_460_036, 854_775_807));
3384///
3385/// # Ok::<(), Box<dyn std::error::Error>>(())
3386/// ```
3387///
3388/// # Example: converting a negative span
3389///
3390/// Since a `Span` is signed and a `Duration` is unsigned, converting
3391/// a negative `Span` to `Duration` will always fail. One can use
3392/// [`Span::signum`] to get the sign of the span and [`Span::abs`] to make the
3393/// span positive before converting it to a `Duration`:
3394///
3395/// ```
3396/// use std::time::Duration;
3397///
3398/// use jiff::{Span, ToSpan};
3399///
3400/// let span = -86_400.seconds().nanoseconds(1);
3401/// let (sign, duration) = (span.signum(), Duration::try_from(span.abs())?);
3402/// assert_eq!((sign, duration), (-1, Duration::new(86_400, 1)));
3403///
3404/// # Ok::<(), Box<dyn std::error::Error>>(())
3405/// ```
3406impl TryFrom<Span> for UnsignedDuration {
3407    type Error = Error;
3408
3409    #[inline]
3410    fn try_from(sp: Span) -> Result<UnsignedDuration, Error> {
3411        // This isn't needed, but improves error messages.
3412        if sp.is_negative() {
3413            return Err(err!(
3414                "cannot convert negative span {sp:?} \
3415                 to unsigned std::time::Duration",
3416            ));
3417        }
3418        SignedDuration::try_from(sp).and_then(UnsignedDuration::try_from)
3419    }
3420}
3421
3422/// Converts a [`std::time::Duration`] to a `Span`.
3423///
3424/// The span returned from this conversion will only ever have non-zero units
3425/// of seconds or smaller.
3426///
3427/// # Errors
3428///
3429/// This only fails when the given `Duration` overflows the maximum number of
3430/// seconds representable by a `Span`.
3431///
3432/// # Example
3433///
3434/// This shows a basic conversion:
3435///
3436/// ```
3437/// use std::time::Duration;
3438///
3439/// use jiff::{Span, ToSpan};
3440///
3441/// let duration = Duration::new(86_400, 123_456_789);
3442/// let span = Span::try_from(duration)?;
3443/// // A duration-to-span conversion always results in a span with
3444/// // non-zero units no bigger than seconds.
3445/// assert_eq!(
3446///     span.fieldwise(),
3447///     86_400.seconds().milliseconds(123).microseconds(456).nanoseconds(789),
3448/// );
3449///
3450/// # Ok::<(), Box<dyn std::error::Error>>(())
3451/// ```
3452///
3453/// # Example: rounding
3454///
3455/// This example shows how to convert a `Duration` to a `Span`, and then round
3456/// it up to bigger units given a relative date:
3457///
3458/// ```
3459/// use std::time::Duration;
3460///
3461/// use jiff::{civil::date, Span, SpanRound, ToSpan, Unit};
3462///
3463/// let duration = Duration::new(450 * 86_401, 0);
3464/// let span = Span::try_from(duration)?;
3465/// // We get back a simple span of just seconds:
3466/// assert_eq!(span.fieldwise(), Span::new().seconds(450 * 86_401));
3467/// // But we can balance it up to bigger units:
3468/// let options = SpanRound::new()
3469///     .largest(Unit::Year)
3470///     .relative(date(2024, 1, 1));
3471/// assert_eq!(
3472///     span.round(options)?,
3473///     1.year().months(2).days(25).minutes(7).seconds(30).fieldwise(),
3474/// );
3475///
3476/// # Ok::<(), Box<dyn std::error::Error>>(())
3477/// ```
3478impl TryFrom<UnsignedDuration> for Span {
3479    type Error = Error;
3480
3481    #[inline]
3482    fn try_from(d: UnsignedDuration) -> Result<Span, Error> {
3483        let seconds = i64::try_from(d.as_secs()).map_err(|_| {
3484            err!("seconds from {d:?} overflows a 64-bit signed integer")
3485        })?;
3486        let nanoseconds = i64::from(d.subsec_nanos());
3487        let milliseconds = nanoseconds / t::NANOS_PER_MILLI.value();
3488        let microseconds = (nanoseconds % t::NANOS_PER_MILLI.value())
3489            / t::NANOS_PER_MICRO.value();
3490        let nanoseconds = nanoseconds % t::NANOS_PER_MICRO.value();
3491
3492        let span = Span::new().try_seconds(seconds).with_context(|| {
3493            err!("duration {d:?} overflows limits of a Jiff `Span`")
3494        })?;
3495        // These are all OK because `Duration::subsec_nanos` is guaranteed to
3496        // return less than 1_000_000_000 nanoseconds. And splitting that up
3497        // into millis, micros and nano components is guaranteed to fit into
3498        // the limits of a `Span`.
3499        Ok(span
3500            .milliseconds(milliseconds)
3501            .microseconds(microseconds)
3502            .nanoseconds(nanoseconds))
3503    }
3504}
3505
3506/// Converts a `Span` to a [`SignedDuration`].
3507///
3508/// Note that this assumes that days are always 24 hours long.
3509///
3510/// # Errors
3511///
3512/// This can fail for only when the span has any non-zero units greater than
3513/// hours. This is an error because it's impossible to determine the length of,
3514/// e.g., a month without a reference date.
3515///
3516/// This can never result in overflow because a `SignedDuration` can represent
3517/// a bigger span of time than `Span` when limited to units of hours or lower.
3518///
3519/// If you need to convert a `Span` to a `SignedDuration` that has non-zero
3520/// units bigger than hours, then please use [`Span::to_duration`] with a
3521/// corresponding relative date.
3522///
3523/// # Example: maximal span
3524///
3525/// This example shows the maximum possible span using units of hours or
3526/// smaller, and the corresponding `SignedDuration` value:
3527///
3528/// ```
3529/// use jiff::{SignedDuration, Span};
3530///
3531/// let sp = Span::new()
3532///     .hours(175_307_616)
3533///     .minutes(10_518_456_960i64)
3534///     .seconds(631_107_417_600i64)
3535///     .milliseconds(631_107_417_600_000i64)
3536///     .microseconds(631_107_417_600_000_000i64)
3537///     .nanoseconds(9_223_372_036_854_775_807i64);
3538/// let duration = SignedDuration::try_from(sp)?;
3539/// assert_eq!(duration, SignedDuration::new(3_164_760_460_036, 854_775_807));
3540///
3541/// # Ok::<(), Box<dyn std::error::Error>>(())
3542/// ```
3543impl TryFrom<Span> for SignedDuration {
3544    type Error = Error;
3545
3546    #[inline]
3547    fn try_from(sp: Span) -> Result<SignedDuration, Error> {
3548        requires_relative_date_err(sp.largest_unit()).context(
3549            "failed to convert span to duration without relative datetime \
3550             (must use `Span::to_duration` instead)",
3551        )?;
3552        Ok(sp.to_duration_invariant())
3553    }
3554}
3555
3556/// Converts a [`SignedDuration`] to a `Span`.
3557///
3558/// The span returned from this conversion will only ever have non-zero units
3559/// of seconds or smaller.
3560///
3561/// # Errors
3562///
3563/// This only fails when the given `SignedDuration` overflows the maximum
3564/// number of seconds representable by a `Span`.
3565///
3566/// # Example
3567///
3568/// This shows a basic conversion:
3569///
3570/// ```
3571/// use jiff::{SignedDuration, Span, ToSpan};
3572///
3573/// let duration = SignedDuration::new(86_400, 123_456_789);
3574/// let span = Span::try_from(duration)?;
3575/// // A duration-to-span conversion always results in a span with
3576/// // non-zero units no bigger than seconds.
3577/// assert_eq!(
3578///     span.fieldwise(),
3579///     86_400.seconds().milliseconds(123).microseconds(456).nanoseconds(789),
3580/// );
3581///
3582/// # Ok::<(), Box<dyn std::error::Error>>(())
3583/// ```
3584///
3585/// # Example: rounding
3586///
3587/// This example shows how to convert a `SignedDuration` to a `Span`, and then
3588/// round it up to bigger units given a relative date:
3589///
3590/// ```
3591/// use jiff::{civil::date, SignedDuration, Span, SpanRound, ToSpan, Unit};
3592///
3593/// let duration = SignedDuration::new(450 * 86_401, 0);
3594/// let span = Span::try_from(duration)?;
3595/// // We get back a simple span of just seconds:
3596/// assert_eq!(span.fieldwise(), Span::new().seconds(450 * 86_401));
3597/// // But we can balance it up to bigger units:
3598/// let options = SpanRound::new()
3599///     .largest(Unit::Year)
3600///     .relative(date(2024, 1, 1));
3601/// assert_eq!(
3602///     span.round(options)?,
3603///     1.year().months(2).days(25).minutes(7).seconds(30).fieldwise(),
3604/// );
3605///
3606/// # Ok::<(), Box<dyn std::error::Error>>(())
3607/// ```
3608impl TryFrom<SignedDuration> for Span {
3609    type Error = Error;
3610
3611    #[inline]
3612    fn try_from(d: SignedDuration) -> Result<Span, Error> {
3613        let seconds = d.as_secs();
3614        let nanoseconds = i64::from(d.subsec_nanos());
3615        let milliseconds = nanoseconds / t::NANOS_PER_MILLI.value();
3616        let microseconds = (nanoseconds % t::NANOS_PER_MILLI.value())
3617            / t::NANOS_PER_MICRO.value();
3618        let nanoseconds = nanoseconds % t::NANOS_PER_MICRO.value();
3619
3620        let span = Span::new().try_seconds(seconds).with_context(|| {
3621            err!("signed duration {d:?} overflows limits of a Jiff `Span`")
3622        })?;
3623        // These are all OK because `|SignedDuration::subsec_nanos|` is
3624        // guaranteed to return less than 1_000_000_000 nanoseconds. And
3625        // splitting that up into millis, micros and nano components is
3626        // guaranteed to fit into the limits of a `Span`.
3627        Ok(span
3628            .milliseconds(milliseconds)
3629            .microseconds(microseconds)
3630            .nanoseconds(nanoseconds))
3631    }
3632}
3633
3634#[cfg(feature = "serde")]
3635impl serde::Serialize for Span {
3636    #[inline]
3637    fn serialize<S: serde::Serializer>(
3638        &self,
3639        serializer: S,
3640    ) -> Result<S::Ok, S::Error> {
3641        serializer.collect_str(self)
3642    }
3643}
3644
3645#[cfg(feature = "serde")]
3646impl<'de> serde::Deserialize<'de> for Span {
3647    #[inline]
3648    fn deserialize<D: serde::Deserializer<'de>>(
3649        deserializer: D,
3650    ) -> Result<Span, D::Error> {
3651        use serde::de;
3652
3653        struct SpanVisitor;
3654
3655        impl<'de> de::Visitor<'de> for SpanVisitor {
3656            type Value = Span;
3657
3658            fn expecting(
3659                &self,
3660                f: &mut core::fmt::Formatter,
3661            ) -> core::fmt::Result {
3662                f.write_str("a span duration string")
3663            }
3664
3665            #[inline]
3666            fn visit_bytes<E: de::Error>(
3667                self,
3668                value: &[u8],
3669            ) -> Result<Span, E> {
3670                parse_iso_or_friendly(value).map_err(de::Error::custom)
3671            }
3672
3673            #[inline]
3674            fn visit_str<E: de::Error>(self, value: &str) -> Result<Span, E> {
3675                self.visit_bytes(value.as_bytes())
3676            }
3677        }
3678
3679        deserializer.deserialize_str(SpanVisitor)
3680    }
3681}
3682
3683#[cfg(test)]
3684impl quickcheck::Arbitrary for Span {
3685    fn arbitrary(g: &mut quickcheck::Gen) -> Span {
3686        // In order to sample from the full space of possible spans, we need
3687        // to provide a relative datetime. But if we do that, then it's
3688        // possible the span plus the datetime overflows. So we pick one
3689        // datetime and shrink the size of the span we can produce.
3690        type Nanos = ri64<-631_107_417_600_000_000, 631_107_417_600_000_000>;
3691        let nanos = Nanos::arbitrary(g).get();
3692        let relative =
3693            SpanRelativeTo::from(DateTime::constant(0, 1, 1, 0, 0, 0, 0));
3694        let round =
3695            SpanRound::new().largest(Unit::arbitrary(g)).relative(relative);
3696        Span::new().nanoseconds(nanos).round(round).unwrap()
3697    }
3698
3699    fn shrink(&self) -> alloc::boxed::Box<dyn Iterator<Item = Self>> {
3700        alloc::boxed::Box::new(
3701            (
3702                (
3703                    self.get_years_ranged(),
3704                    self.get_months_ranged(),
3705                    self.get_weeks_ranged(),
3706                    self.get_days_ranged(),
3707                ),
3708                (
3709                    self.get_hours_ranged(),
3710                    self.get_minutes_ranged(),
3711                    self.get_seconds_ranged(),
3712                    self.get_milliseconds_ranged(),
3713                ),
3714                (
3715                    self.get_microseconds_ranged(),
3716                    self.get_nanoseconds_ranged(),
3717                ),
3718            )
3719                .shrink()
3720                .filter_map(
3721                    |(
3722                        (years, months, weeks, days),
3723                        (hours, minutes, seconds, milliseconds),
3724                        (microseconds, nanoseconds),
3725                    )| {
3726                        let span = Span::new()
3727                            .years_ranged(years)
3728                            .months_ranged(months)
3729                            .weeks_ranged(weeks)
3730                            .days_ranged(days)
3731                            .hours_ranged(hours)
3732                            .minutes_ranged(minutes)
3733                            .seconds_ranged(seconds)
3734                            .milliseconds_ranged(milliseconds)
3735                            .microseconds_ranged(microseconds)
3736                            .nanoseconds_ranged(nanoseconds);
3737                        Some(span)
3738                    },
3739                ),
3740        )
3741    }
3742}
3743
3744/// A wrapper for [`Span`] that implements the `Hash`, `Eq` and `PartialEq`
3745/// traits.
3746///
3747/// A `SpanFieldwise` is meant to make it easy to compare two spans in a "dumb"
3748/// way based purely on its unit values, while still providing a speed bump
3749/// to avoid accidentally doing this comparison on `Span` directly. This is
3750/// distinct from something like [`Span::compare`] that performs a comparison
3751/// on the actual elapsed time of two spans.
3752///
3753/// It is generally discouraged to use `SpanFieldwise` since spans that
3754/// represent an equivalent elapsed amount of time may compare unequal.
3755/// However, in some cases, it is useful to be able to assert precise field
3756/// values. For example, Jiff itself makes heavy use of fieldwise comparisons
3757/// for tests.
3758///
3759/// # Construction
3760///
3761/// While callers may use `SpanFieldwise(span)` (where `span` has type [`Span`])
3762/// to construct a value of this type, callers may find [`Span::fieldwise`]
3763/// more convenient. Namely, `Span::fieldwise` may avoid the need to explicitly
3764/// import `SpanFieldwise`.
3765///
3766/// # Trait implementations
3767///
3768/// In addition to implementing the `Hash`, `Eq` and `PartialEq` traits, this
3769/// type also provides `PartialEq` impls for comparing a `Span` with a
3770/// `SpanFieldwise`. This simplifies comparisons somewhat while still requiring
3771/// that at least one of the values has an explicit fieldwise comparison type.
3772///
3773/// # Safety
3774///
3775/// This type is guaranteed to have the same layout in memory as [`Span`].
3776///
3777/// # Example: the difference between `SpanFieldwise` and [`Span::compare`]
3778///
3779/// In short, `SpanFieldwise` considers `2 hours` and `120 minutes` to be
3780/// distinct values, but `Span::compare` considers them to be equivalent:
3781///
3782/// ```
3783/// use std::cmp::Ordering;
3784/// use jiff::ToSpan;
3785///
3786/// assert_ne!(120.minutes().fieldwise(), 2.hours().fieldwise());
3787/// assert_eq!(120.minutes().compare(2.hours())?, Ordering::Equal);
3788///
3789/// // These comparisons are allowed between a `Span` and a `SpanFieldwise`.
3790/// // Namely, as long as one value is "fieldwise," then the comparison is OK.
3791/// assert_ne!(120.minutes().fieldwise(), 2.hours());
3792/// assert_ne!(120.minutes(), 2.hours().fieldwise());
3793///
3794/// # Ok::<(), Box<dyn std::error::Error>>(())
3795/// ```
3796#[derive(Clone, Copy, Debug, Default)]
3797#[repr(transparent)]
3798pub struct SpanFieldwise(pub Span);
3799
3800// Exists so that things like `-1.day().fieldwise()` works as expected.
3801impl core::ops::Neg for SpanFieldwise {
3802    type Output = SpanFieldwise;
3803
3804    #[inline]
3805    fn neg(self) -> SpanFieldwise {
3806        SpanFieldwise(self.0.negate())
3807    }
3808}
3809
3810impl Eq for SpanFieldwise {}
3811
3812impl PartialEq for SpanFieldwise {
3813    fn eq(&self, rhs: &SpanFieldwise) -> bool {
3814        self.0.sign == rhs.0.sign
3815            && self.0.years == rhs.0.years
3816            && self.0.months == rhs.0.months
3817            && self.0.weeks == rhs.0.weeks
3818            && self.0.days == rhs.0.days
3819            && self.0.hours == rhs.0.hours
3820            && self.0.minutes == rhs.0.minutes
3821            && self.0.seconds == rhs.0.seconds
3822            && self.0.milliseconds == rhs.0.milliseconds
3823            && self.0.microseconds == rhs.0.microseconds
3824            && self.0.nanoseconds == rhs.0.nanoseconds
3825    }
3826}
3827
3828impl<'a> PartialEq<SpanFieldwise> for &'a SpanFieldwise {
3829    fn eq(&self, rhs: &SpanFieldwise) -> bool {
3830        *self == rhs
3831    }
3832}
3833
3834impl PartialEq<Span> for SpanFieldwise {
3835    fn eq(&self, rhs: &Span) -> bool {
3836        self == rhs.fieldwise()
3837    }
3838}
3839
3840impl PartialEq<SpanFieldwise> for Span {
3841    fn eq(&self, rhs: &SpanFieldwise) -> bool {
3842        self.fieldwise() == *rhs
3843    }
3844}
3845
3846impl<'a> PartialEq<SpanFieldwise> for &'a Span {
3847    fn eq(&self, rhs: &SpanFieldwise) -> bool {
3848        self.fieldwise() == *rhs
3849    }
3850}
3851
3852impl core::hash::Hash for SpanFieldwise {
3853    fn hash<H: core::hash::Hasher>(&self, state: &mut H) {
3854        self.0.sign.hash(state);
3855        self.0.years.hash(state);
3856        self.0.months.hash(state);
3857        self.0.weeks.hash(state);
3858        self.0.days.hash(state);
3859        self.0.hours.hash(state);
3860        self.0.minutes.hash(state);
3861        self.0.seconds.hash(state);
3862        self.0.milliseconds.hash(state);
3863        self.0.microseconds.hash(state);
3864        self.0.nanoseconds.hash(state);
3865    }
3866}
3867
3868impl From<Span> for SpanFieldwise {
3869    fn from(span: Span) -> SpanFieldwise {
3870        SpanFieldwise(span)
3871    }
3872}
3873
3874impl From<SpanFieldwise> for Span {
3875    fn from(span: SpanFieldwise) -> Span {
3876        span.0
3877    }
3878}
3879
3880/// A trait for enabling concise literals for creating [`Span`] values.
3881///
3882/// In short, this trait lets you write something like `5.seconds()` or
3883/// `1.day()` to create a [`Span`]. Once a `Span` has been created, you can
3884/// use its mutator methods to add more fields. For example,
3885/// `1.day().hours(10)` is equivalent to `Span::new().days(1).hours(10)`.
3886///
3887/// This trait is implemented for the following integer types: `i8`, `i16`,
3888/// `i32` and `i64`.
3889///
3890/// Note that this trait is provided as a convenience and should generally
3891/// only be used for literals in your source code. You should not use this
3892/// trait on numbers provided by end users. Namely, if the number provided
3893/// is not within Jiff's span limits, then these trait methods will panic.
3894/// Instead, use fallible mutator constructors like [`Span::try_days`]
3895/// or [`Span::try_seconds`].
3896///
3897/// # Example
3898///
3899/// ```
3900/// use jiff::ToSpan;
3901///
3902/// assert_eq!(5.days().to_string(), "P5D");
3903/// assert_eq!(5.days().hours(10).to_string(), "P5DT10H");
3904///
3905/// // Negation works and it doesn't matter where the sign goes. It can be
3906/// // applied to the span itself or to the integer.
3907/// assert_eq!((-5.days()).to_string(), "-P5D");
3908/// assert_eq!((-5).days().to_string(), "-P5D");
3909/// ```
3910///
3911/// # Example: alternative via span parsing
3912///
3913/// Another way of tersely building a `Span` value is by parsing a ISO 8601
3914/// duration string:
3915///
3916/// ```
3917/// use jiff::Span;
3918///
3919/// let span = "P5y2m15dT23h30m10s".parse::<Span>()?;
3920/// assert_eq!(
3921///     span.fieldwise(),
3922///     Span::new().years(5).months(2).days(15).hours(23).minutes(30).seconds(10),
3923/// );
3924///
3925/// # Ok::<(), Box<dyn std::error::Error>>(())
3926/// ```
3927pub trait ToSpan: Sized {
3928    /// Create a new span from this integer in units of years.
3929    ///
3930    /// # Panics
3931    ///
3932    /// When `Span::new().years(self)` would panic.
3933    fn years(self) -> Span;
3934
3935    /// Create a new span from this integer in units of months.
3936    ///
3937    /// # Panics
3938    ///
3939    /// When `Span::new().months(self)` would panic.
3940    fn months(self) -> Span;
3941
3942    /// Create a new span from this integer in units of weeks.
3943    ///
3944    /// # Panics
3945    ///
3946    /// When `Span::new().weeks(self)` would panic.
3947    fn weeks(self) -> Span;
3948
3949    /// Create a new span from this integer in units of days.
3950    ///
3951    /// # Panics
3952    ///
3953    /// When `Span::new().days(self)` would panic.
3954    fn days(self) -> Span;
3955
3956    /// Create a new span from this integer in units of hours.
3957    ///
3958    /// # Panics
3959    ///
3960    /// When `Span::new().hours(self)` would panic.
3961    fn hours(self) -> Span;
3962
3963    /// Create a new span from this integer in units of minutes.
3964    ///
3965    /// # Panics
3966    ///
3967    /// When `Span::new().minutes(self)` would panic.
3968    fn minutes(self) -> Span;
3969
3970    /// Create a new span from this integer in units of seconds.
3971    ///
3972    /// # Panics
3973    ///
3974    /// When `Span::new().seconds(self)` would panic.
3975    fn seconds(self) -> Span;
3976
3977    /// Create a new span from this integer in units of milliseconds.
3978    ///
3979    /// # Panics
3980    ///
3981    /// When `Span::new().milliseconds(self)` would panic.
3982    fn milliseconds(self) -> Span;
3983
3984    /// Create a new span from this integer in units of microseconds.
3985    ///
3986    /// # Panics
3987    ///
3988    /// When `Span::new().microseconds(self)` would panic.
3989    fn microseconds(self) -> Span;
3990
3991    /// Create a new span from this integer in units of nanoseconds.
3992    ///
3993    /// # Panics
3994    ///
3995    /// When `Span::new().nanoseconds(self)` would panic.
3996    fn nanoseconds(self) -> Span;
3997
3998    /// Equivalent to `years()`, but reads better for singular units.
3999    #[inline]
4000    fn year(self) -> Span {
4001        self.years()
4002    }
4003
4004    /// Equivalent to `months()`, but reads better for singular units.
4005    #[inline]
4006    fn month(self) -> Span {
4007        self.months()
4008    }
4009
4010    /// Equivalent to `weeks()`, but reads better for singular units.
4011    #[inline]
4012    fn week(self) -> Span {
4013        self.weeks()
4014    }
4015
4016    /// Equivalent to `days()`, but reads better for singular units.
4017    #[inline]
4018    fn day(self) -> Span {
4019        self.days()
4020    }
4021
4022    /// Equivalent to `hours()`, but reads better for singular units.
4023    #[inline]
4024    fn hour(self) -> Span {
4025        self.hours()
4026    }
4027
4028    /// Equivalent to `minutes()`, but reads better for singular units.
4029    #[inline]
4030    fn minute(self) -> Span {
4031        self.minutes()
4032    }
4033
4034    /// Equivalent to `seconds()`, but reads better for singular units.
4035    #[inline]
4036    fn second(self) -> Span {
4037        self.seconds()
4038    }
4039
4040    /// Equivalent to `milliseconds()`, but reads better for singular units.
4041    #[inline]
4042    fn millisecond(self) -> Span {
4043        self.milliseconds()
4044    }
4045
4046    /// Equivalent to `microseconds()`, but reads better for singular units.
4047    #[inline]
4048    fn microsecond(self) -> Span {
4049        self.microseconds()
4050    }
4051
4052    /// Equivalent to `nanoseconds()`, but reads better for singular units.
4053    #[inline]
4054    fn nanosecond(self) -> Span {
4055        self.nanoseconds()
4056    }
4057}
4058
4059macro_rules! impl_to_span {
4060    ($ty:ty) => {
4061        impl ToSpan for $ty {
4062            #[inline]
4063            fn years(self) -> Span {
4064                Span::new().years(self)
4065            }
4066            #[inline]
4067            fn months(self) -> Span {
4068                Span::new().months(self)
4069            }
4070            #[inline]
4071            fn weeks(self) -> Span {
4072                Span::new().weeks(self)
4073            }
4074            #[inline]
4075            fn days(self) -> Span {
4076                Span::new().days(self)
4077            }
4078            #[inline]
4079            fn hours(self) -> Span {
4080                Span::new().hours(self)
4081            }
4082            #[inline]
4083            fn minutes(self) -> Span {
4084                Span::new().minutes(self)
4085            }
4086            #[inline]
4087            fn seconds(self) -> Span {
4088                Span::new().seconds(self)
4089            }
4090            #[inline]
4091            fn milliseconds(self) -> Span {
4092                Span::new().milliseconds(self)
4093            }
4094            #[inline]
4095            fn microseconds(self) -> Span {
4096                Span::new().microseconds(self)
4097            }
4098            #[inline]
4099            fn nanoseconds(self) -> Span {
4100                Span::new().nanoseconds(self)
4101            }
4102        }
4103    };
4104}
4105
4106impl_to_span!(i8);
4107impl_to_span!(i16);
4108impl_to_span!(i32);
4109impl_to_span!(i64);
4110
4111/// A way to refer to a single calendar or clock unit.
4112///
4113/// This type is principally used in APIs involving a [`Span`], which is a
4114/// duration of time. For example, routines like [`Zoned::until`] permit
4115/// specifying the largest unit of the span returned:
4116///
4117/// ```
4118/// use jiff::{Unit, Zoned};
4119///
4120/// let zdt1: Zoned = "2024-07-06 17:40-04[America/New_York]".parse()?;
4121/// let zdt2: Zoned = "2024-11-05 08:00-05[America/New_York]".parse()?;
4122/// let span = zdt1.until((Unit::Year, &zdt2))?;
4123/// assert_eq!(format!("{span:#}"), "3mo 29d 14h 20m");
4124///
4125/// # Ok::<(), Box<dyn std::error::Error>>(())
4126/// ```
4127///
4128/// But a `Unit` is also used in APIs for rounding datetimes themselves:
4129///
4130/// ```
4131/// use jiff::{Unit, Zoned};
4132///
4133/// let zdt: Zoned = "2024-07-06 17:44:22.158-04[America/New_York]".parse()?;
4134/// let nearest_minute = zdt.round(Unit::Minute)?;
4135/// assert_eq!(
4136///     nearest_minute.to_string(),
4137///     "2024-07-06T17:44:00-04:00[America/New_York]",
4138/// );
4139///
4140/// # Ok::<(), Box<dyn std::error::Error>>(())
4141/// ```
4142///
4143/// # Example: ordering
4144///
4145/// This example demonstrates that `Unit` has an ordering defined such that
4146/// bigger units compare greater than smaller units.
4147///
4148/// ```
4149/// use jiff::Unit;
4150///
4151/// assert!(Unit::Year > Unit::Nanosecond);
4152/// assert!(Unit::Day > Unit::Hour);
4153/// assert!(Unit::Hour > Unit::Minute);
4154/// assert!(Unit::Hour > Unit::Minute);
4155/// assert_eq!(Unit::Hour, Unit::Hour);
4156/// ```
4157#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq, PartialOrd, Ord)]
4158pub enum Unit {
4159    /// A Gregorian calendar year. It usually has 365 days for non-leap years,
4160    /// and 366 days for leap years.
4161    Year = 9,
4162    /// A Gregorian calendar month. It usually has one of 28, 29, 30 or 31
4163    /// days.
4164    Month = 8,
4165    /// A week is 7 days that either begins on Sunday or Monday.
4166    Week = 7,
4167    /// A day is usually 24 hours, but some days may have different lengths
4168    /// due to time zone transitions.
4169    Day = 6,
4170    /// An hour is always 60 minutes.
4171    Hour = 5,
4172    /// A minute is always 60 seconds. (Jiff behaves as if leap seconds do not
4173    /// exist.)
4174    Minute = 4,
4175    /// A second is always 1,000 milliseconds.
4176    Second = 3,
4177    /// A millisecond is always 1,000 microseconds.
4178    Millisecond = 2,
4179    /// A microsecond is always 1,000 nanoseconds.
4180    Microsecond = 1,
4181    /// A nanosecond is the smallest granularity of time supported by Jiff.
4182    Nanosecond = 0,
4183}
4184
4185impl Unit {
4186    /// Returns the next biggest unit, if one exists.
4187    pub(crate) fn next(&self) -> Option<Unit> {
4188        match *self {
4189            Unit::Year => None,
4190            Unit::Month => Some(Unit::Year),
4191            Unit::Week => Some(Unit::Month),
4192            Unit::Day => Some(Unit::Week),
4193            Unit::Hour => Some(Unit::Day),
4194            Unit::Minute => Some(Unit::Hour),
4195            Unit::Second => Some(Unit::Minute),
4196            Unit::Millisecond => Some(Unit::Second),
4197            Unit::Microsecond => Some(Unit::Millisecond),
4198            Unit::Nanosecond => Some(Unit::Microsecond),
4199        }
4200    }
4201
4202    /// Returns the number of nanoseconds in this unit as a 128-bit integer.
4203    ///
4204    /// # Panics
4205    ///
4206    /// When this unit is always variable. That is, years or months.
4207    pub(crate) fn nanoseconds(self) -> NoUnits128 {
4208        match self {
4209            Unit::Nanosecond => Constant(1),
4210            Unit::Microsecond => t::NANOS_PER_MICRO,
4211            Unit::Millisecond => t::NANOS_PER_MILLI,
4212            Unit::Second => t::NANOS_PER_SECOND,
4213            Unit::Minute => t::NANOS_PER_MINUTE,
4214            Unit::Hour => t::NANOS_PER_HOUR,
4215            Unit::Day => t::NANOS_PER_CIVIL_DAY,
4216            Unit::Week => t::NANOS_PER_CIVIL_WEEK,
4217            unit => unreachable!("{unit:?} has no definitive time interval"),
4218        }
4219        .rinto()
4220    }
4221
4222    /// Returns true when this unit is definitively variable.
4223    ///
4224    /// In effect, this is any unit bigger than 'day', because any such unit
4225    /// can vary in time depending on its reference point. A 'day' can as well,
4226    /// but we sorta special case 'day' to mean '24 hours' for cases where
4227    /// the user is dealing with civil time.
4228    fn is_variable(self) -> bool {
4229        matches!(self, Unit::Year | Unit::Month | Unit::Week | Unit::Day)
4230    }
4231
4232    /// A human readable singular description of this unit of time.
4233    pub(crate) fn singular(&self) -> &'static str {
4234        match *self {
4235            Unit::Year => "year",
4236            Unit::Month => "month",
4237            Unit::Week => "week",
4238            Unit::Day => "day",
4239            Unit::Hour => "hour",
4240            Unit::Minute => "minute",
4241            Unit::Second => "second",
4242            Unit::Millisecond => "millisecond",
4243            Unit::Microsecond => "microsecond",
4244            Unit::Nanosecond => "nanosecond",
4245        }
4246    }
4247
4248    /// A human readable plural description of this unit of time.
4249    pub(crate) fn plural(&self) -> &'static str {
4250        match *self {
4251            Unit::Year => "years",
4252            Unit::Month => "months",
4253            Unit::Week => "weeks",
4254            Unit::Day => "days",
4255            Unit::Hour => "hours",
4256            Unit::Minute => "minutes",
4257            Unit::Second => "seconds",
4258            Unit::Millisecond => "milliseconds",
4259            Unit::Microsecond => "microseconds",
4260            Unit::Nanosecond => "nanoseconds",
4261        }
4262    }
4263
4264    /// A very succinct label corresponding to this unit.
4265    pub(crate) fn compact(&self) -> &'static str {
4266        match *self {
4267            Unit::Year => "y",
4268            Unit::Month => "mo",
4269            Unit::Week => "w",
4270            Unit::Day => "d",
4271            Unit::Hour => "h",
4272            Unit::Minute => "m",
4273            Unit::Second => "s",
4274            Unit::Millisecond => "ms",
4275            Unit::Microsecond => "µs",
4276            Unit::Nanosecond => "ns",
4277        }
4278    }
4279
4280    /// The inverse of `unit as usize`.
4281    fn from_usize(n: usize) -> Option<Unit> {
4282        match n {
4283            0 => Some(Unit::Nanosecond),
4284            1 => Some(Unit::Microsecond),
4285            2 => Some(Unit::Millisecond),
4286            3 => Some(Unit::Second),
4287            4 => Some(Unit::Minute),
4288            5 => Some(Unit::Hour),
4289            6 => Some(Unit::Day),
4290            7 => Some(Unit::Week),
4291            8 => Some(Unit::Month),
4292            9 => Some(Unit::Year),
4293            _ => None,
4294        }
4295    }
4296}
4297
4298#[cfg(test)]
4299impl quickcheck::Arbitrary for Unit {
4300    fn arbitrary(g: &mut quickcheck::Gen) -> Unit {
4301        Unit::from_usize(usize::arbitrary(g) % 10).unwrap()
4302    }
4303
4304    fn shrink(&self) -> alloc::boxed::Box<dyn Iterator<Item = Self>> {
4305        alloc::boxed::Box::new(
4306            (*self as usize)
4307                .shrink()
4308                .map(|n| Unit::from_usize(n % 10).unwrap()),
4309        )
4310    }
4311}
4312
4313/// Options for [`Span::checked_add`] and [`Span::checked_sub`].
4314///
4315/// This type provides a way to ergonomically add two spans with an optional
4316/// relative datetime. Namely, a relative datetime is only needed when at least
4317/// one of the two spans being added (or subtracted) has a non-zero calendar
4318/// unit (years, months, weeks or days). Otherwise, an error will be returned.
4319///
4320/// Callers may use [`SpanArithmetic::days_are_24_hours`] to opt into 24-hour
4321/// invariant days (and 7-day weeks) without providing a relative datetime.
4322///
4323/// The main way to construct values of this type is with its `From` trait
4324/// implementations:
4325///
4326/// * `From<Span> for SpanArithmetic` adds (or subtracts) the given span to the
4327/// receiver in [`Span::checked_add`] (or [`Span::checked_sub`]).
4328/// * `From<(Span, civil::Date)> for SpanArithmetic` adds (or subtracts)
4329/// the given span to the receiver in [`Span::checked_add`] (or
4330/// [`Span::checked_sub`]), relative to the given date. There are also `From`
4331/// implementations for `civil::DateTime`, `Zoned` and [`SpanRelativeTo`].
4332///
4333/// # Example
4334///
4335/// ```
4336/// use jiff::ToSpan;
4337///
4338/// assert_eq!(
4339///     1.hour().checked_add(30.minutes())?,
4340///     1.hour().minutes(30).fieldwise(),
4341/// );
4342///
4343/// # Ok::<(), Box<dyn std::error::Error>>(())
4344/// ```
4345#[derive(Clone, Copy, Debug)]
4346pub struct SpanArithmetic<'a> {
4347    duration: Duration,
4348    relative: Option<SpanRelativeTo<'a>>,
4349}
4350
4351impl<'a> SpanArithmetic<'a> {
4352    /// This is a convenience function for setting the relative option on
4353    /// this configuration to [`SpanRelativeTo::days_are_24_hours`].
4354    ///
4355    /// # Example
4356    ///
4357    /// When doing arithmetic on spans involving days, either a relative
4358    /// datetime must be provided, or a special assertion opting into 24-hour
4359    /// days is required. Otherwise, you get an error.
4360    ///
4361    /// ```
4362    /// use jiff::{SpanArithmetic, ToSpan};
4363    ///
4364    /// let span1 = 2.days().hours(12);
4365    /// let span2 = 12.hours();
4366    /// // No relative date provided, which results in an error.
4367    /// assert_eq!(
4368    ///     span1.checked_add(span2).unwrap_err().to_string(),
4369    ///     "using unit 'day' in a span or configuration requires that \
4370    ///      either a relative reference time be given or \
4371    ///      `SpanRelativeTo::days_are_24_hours()` is used to indicate \
4372    ///      invariant 24-hour days, but neither were provided",
4373    /// );
4374    /// let sum = span1.checked_add(
4375    ///     SpanArithmetic::from(span2).days_are_24_hours(),
4376    /// )?;
4377    /// assert_eq!(sum, 3.days().fieldwise());
4378    ///
4379    /// # Ok::<(), Box<dyn std::error::Error>>(())
4380    /// ```
4381    #[inline]
4382    pub fn days_are_24_hours(self) -> SpanArithmetic<'a> {
4383        self.relative(SpanRelativeTo::days_are_24_hours())
4384    }
4385}
4386
4387impl<'a> SpanArithmetic<'a> {
4388    #[inline]
4389    fn relative<R: Into<SpanRelativeTo<'a>>>(
4390        self,
4391        relative: R,
4392    ) -> SpanArithmetic<'a> {
4393        SpanArithmetic { relative: Some(relative.into()), ..self }
4394    }
4395
4396    #[inline]
4397    fn checked_add(self, span1: Span) -> Result<Span, Error> {
4398        match self.duration.to_signed()? {
4399            SDuration::Span(span2) => {
4400                span1.checked_add_span(self.relative, &span2)
4401            }
4402            SDuration::Absolute(dur2) => {
4403                span1.checked_add_duration(self.relative, dur2)
4404            }
4405        }
4406    }
4407}
4408
4409impl From<Span> for SpanArithmetic<'static> {
4410    fn from(span: Span) -> SpanArithmetic<'static> {
4411        let duration = Duration::from(span);
4412        SpanArithmetic { duration, relative: None }
4413    }
4414}
4415
4416impl<'a> From<&'a Span> for SpanArithmetic<'static> {
4417    fn from(span: &'a Span) -> SpanArithmetic<'static> {
4418        let duration = Duration::from(*span);
4419        SpanArithmetic { duration, relative: None }
4420    }
4421}
4422
4423impl From<(Span, Date)> for SpanArithmetic<'static> {
4424    #[inline]
4425    fn from((span, date): (Span, Date)) -> SpanArithmetic<'static> {
4426        SpanArithmetic::from(span).relative(date)
4427    }
4428}
4429
4430impl From<(Span, DateTime)> for SpanArithmetic<'static> {
4431    #[inline]
4432    fn from((span, datetime): (Span, DateTime)) -> SpanArithmetic<'static> {
4433        SpanArithmetic::from(span).relative(datetime)
4434    }
4435}
4436
4437impl<'a> From<(Span, &'a Zoned)> for SpanArithmetic<'a> {
4438    #[inline]
4439    fn from((span, zoned): (Span, &'a Zoned)) -> SpanArithmetic<'a> {
4440        SpanArithmetic::from(span).relative(zoned)
4441    }
4442}
4443
4444impl<'a> From<(Span, SpanRelativeTo<'a>)> for SpanArithmetic<'a> {
4445    #[inline]
4446    fn from(
4447        (span, relative): (Span, SpanRelativeTo<'a>),
4448    ) -> SpanArithmetic<'a> {
4449        SpanArithmetic::from(span).relative(relative)
4450    }
4451}
4452
4453impl<'a> From<(&'a Span, Date)> for SpanArithmetic<'static> {
4454    #[inline]
4455    fn from((span, date): (&'a Span, Date)) -> SpanArithmetic<'static> {
4456        SpanArithmetic::from(span).relative(date)
4457    }
4458}
4459
4460impl<'a> From<(&'a Span, DateTime)> for SpanArithmetic<'static> {
4461    #[inline]
4462    fn from(
4463        (span, datetime): (&'a Span, DateTime),
4464    ) -> SpanArithmetic<'static> {
4465        SpanArithmetic::from(span).relative(datetime)
4466    }
4467}
4468
4469impl<'a, 'b> From<(&'a Span, &'b Zoned)> for SpanArithmetic<'b> {
4470    #[inline]
4471    fn from((span, zoned): (&'a Span, &'b Zoned)) -> SpanArithmetic<'b> {
4472        SpanArithmetic::from(span).relative(zoned)
4473    }
4474}
4475
4476impl<'a, 'b> From<(&'a Span, SpanRelativeTo<'b>)> for SpanArithmetic<'b> {
4477    #[inline]
4478    fn from(
4479        (span, relative): (&'a Span, SpanRelativeTo<'b>),
4480    ) -> SpanArithmetic<'b> {
4481        SpanArithmetic::from(span).relative(relative)
4482    }
4483}
4484
4485impl From<SignedDuration> for SpanArithmetic<'static> {
4486    fn from(duration: SignedDuration) -> SpanArithmetic<'static> {
4487        let duration = Duration::from(duration);
4488        SpanArithmetic { duration, relative: None }
4489    }
4490}
4491
4492impl From<(SignedDuration, Date)> for SpanArithmetic<'static> {
4493    #[inline]
4494    fn from(
4495        (duration, date): (SignedDuration, Date),
4496    ) -> SpanArithmetic<'static> {
4497        SpanArithmetic::from(duration).relative(date)
4498    }
4499}
4500
4501impl From<(SignedDuration, DateTime)> for SpanArithmetic<'static> {
4502    #[inline]
4503    fn from(
4504        (duration, datetime): (SignedDuration, DateTime),
4505    ) -> SpanArithmetic<'static> {
4506        SpanArithmetic::from(duration).relative(datetime)
4507    }
4508}
4509
4510impl<'a> From<(SignedDuration, &'a Zoned)> for SpanArithmetic<'a> {
4511    #[inline]
4512    fn from(
4513        (duration, zoned): (SignedDuration, &'a Zoned),
4514    ) -> SpanArithmetic<'a> {
4515        SpanArithmetic::from(duration).relative(zoned)
4516    }
4517}
4518
4519impl From<UnsignedDuration> for SpanArithmetic<'static> {
4520    fn from(duration: UnsignedDuration) -> SpanArithmetic<'static> {
4521        let duration = Duration::from(duration);
4522        SpanArithmetic { duration, relative: None }
4523    }
4524}
4525
4526impl From<(UnsignedDuration, Date)> for SpanArithmetic<'static> {
4527    #[inline]
4528    fn from(
4529        (duration, date): (UnsignedDuration, Date),
4530    ) -> SpanArithmetic<'static> {
4531        SpanArithmetic::from(duration).relative(date)
4532    }
4533}
4534
4535impl From<(UnsignedDuration, DateTime)> for SpanArithmetic<'static> {
4536    #[inline]
4537    fn from(
4538        (duration, datetime): (UnsignedDuration, DateTime),
4539    ) -> SpanArithmetic<'static> {
4540        SpanArithmetic::from(duration).relative(datetime)
4541    }
4542}
4543
4544impl<'a> From<(UnsignedDuration, &'a Zoned)> for SpanArithmetic<'a> {
4545    #[inline]
4546    fn from(
4547        (duration, zoned): (UnsignedDuration, &'a Zoned),
4548    ) -> SpanArithmetic<'a> {
4549        SpanArithmetic::from(duration).relative(zoned)
4550    }
4551}
4552
4553/// Options for [`Span::compare`].
4554///
4555/// This type provides a way to ergonomically compare two spans with an
4556/// optional relative datetime. Namely, a relative datetime is only needed when
4557/// at least one of the two spans being compared has a non-zero calendar unit
4558/// (years, months, weeks or days). Otherwise, an error will be returned.
4559///
4560/// Callers may use [`SpanCompare::days_are_24_hours`] to opt into 24-hour
4561/// invariant days (and 7-day weeks) without providing a relative datetime.
4562///
4563/// The main way to construct values of this type is with its `From` trait
4564/// implementations:
4565///
4566/// * `From<Span> for SpanCompare` compares the given span to the receiver
4567/// in [`Span::compare`].
4568/// * `From<(Span, civil::Date)> for SpanCompare` compares the given span
4569/// to the receiver in [`Span::compare`], relative to the given date. There
4570/// are also `From` implementations for `civil::DateTime`, `Zoned` and
4571/// [`SpanRelativeTo`].
4572///
4573/// # Example
4574///
4575/// ```
4576/// use jiff::ToSpan;
4577///
4578/// let span1 = 3.hours();
4579/// let span2 = 180.minutes();
4580/// assert_eq!(span1.compare(span2)?, std::cmp::Ordering::Equal);
4581///
4582/// # Ok::<(), Box<dyn std::error::Error>>(())
4583/// ```
4584#[derive(Clone, Copy, Debug)]
4585pub struct SpanCompare<'a> {
4586    span: Span,
4587    relative: Option<SpanRelativeTo<'a>>,
4588}
4589
4590impl<'a> SpanCompare<'a> {
4591    /// This is a convenience function for setting the relative option on
4592    /// this configuration to [`SpanRelativeTo::days_are_24_hours`].
4593    ///
4594    /// # Example
4595    ///
4596    /// When comparing spans involving days, either a relative datetime must be
4597    /// provided, or a special assertion opting into 24-hour days is
4598    /// required. Otherwise, you get an error.
4599    ///
4600    /// ```
4601    /// use jiff::{SpanCompare, ToSpan, Unit};
4602    ///
4603    /// let span1 = 2.days().hours(12);
4604    /// let span2 = 60.hours();
4605    /// // No relative date provided, which results in an error.
4606    /// assert_eq!(
4607    ///     span1.compare(span2).unwrap_err().to_string(),
4608    ///     "using unit 'day' in a span or configuration requires that \
4609    ///      either a relative reference time be given or \
4610    ///      `SpanRelativeTo::days_are_24_hours()` is used to indicate \
4611    ///      invariant 24-hour days, but neither were provided",
4612    /// );
4613    /// let ordering = span1.compare(
4614    ///     SpanCompare::from(span2).days_are_24_hours(),
4615    /// )?;
4616    /// assert_eq!(ordering, std::cmp::Ordering::Equal);
4617    ///
4618    /// # Ok::<(), Box<dyn std::error::Error>>(())
4619    /// ```
4620    #[inline]
4621    pub fn days_are_24_hours(self) -> SpanCompare<'a> {
4622        self.relative(SpanRelativeTo::days_are_24_hours())
4623    }
4624}
4625
4626impl<'a> SpanCompare<'a> {
4627    #[inline]
4628    fn new(span: Span) -> SpanCompare<'static> {
4629        SpanCompare { span, relative: None }
4630    }
4631
4632    #[inline]
4633    fn relative<R: Into<SpanRelativeTo<'a>>>(
4634        self,
4635        relative: R,
4636    ) -> SpanCompare<'a> {
4637        SpanCompare { relative: Some(relative.into()), ..self }
4638    }
4639
4640    fn compare(self, span: Span) -> Result<Ordering, Error> {
4641        let (span1, span2) = (span, self.span);
4642        let unit = span1.largest_unit().max(span2.largest_unit());
4643        let start = match self.relative {
4644            Some(r) => match r.to_relative(unit)? {
4645                Some(r) => r,
4646                None => {
4647                    let nanos1 = span1.to_invariant_nanoseconds();
4648                    let nanos2 = span2.to_invariant_nanoseconds();
4649                    return Ok(nanos1.cmp(&nanos2));
4650                }
4651            },
4652            None => {
4653                requires_relative_date_err(unit)?;
4654                let nanos1 = span1.to_invariant_nanoseconds();
4655                let nanos2 = span2.to_invariant_nanoseconds();
4656                return Ok(nanos1.cmp(&nanos2));
4657            }
4658        };
4659        let end1 = start.checked_add(span1)?.to_nanosecond();
4660        let end2 = start.checked_add(span2)?.to_nanosecond();
4661        Ok(end1.cmp(&end2))
4662    }
4663}
4664
4665impl From<Span> for SpanCompare<'static> {
4666    fn from(span: Span) -> SpanCompare<'static> {
4667        SpanCompare::new(span)
4668    }
4669}
4670
4671impl<'a> From<&'a Span> for SpanCompare<'static> {
4672    fn from(span: &'a Span) -> SpanCompare<'static> {
4673        SpanCompare::new(*span)
4674    }
4675}
4676
4677impl From<(Span, Date)> for SpanCompare<'static> {
4678    #[inline]
4679    fn from((span, date): (Span, Date)) -> SpanCompare<'static> {
4680        SpanCompare::from(span).relative(date)
4681    }
4682}
4683
4684impl From<(Span, DateTime)> for SpanCompare<'static> {
4685    #[inline]
4686    fn from((span, datetime): (Span, DateTime)) -> SpanCompare<'static> {
4687        SpanCompare::from(span).relative(datetime)
4688    }
4689}
4690
4691impl<'a> From<(Span, &'a Zoned)> for SpanCompare<'a> {
4692    #[inline]
4693    fn from((span, zoned): (Span, &'a Zoned)) -> SpanCompare<'a> {
4694        SpanCompare::from(span).relative(zoned)
4695    }
4696}
4697
4698impl<'a> From<(Span, SpanRelativeTo<'a>)> for SpanCompare<'a> {
4699    #[inline]
4700    fn from((span, relative): (Span, SpanRelativeTo<'a>)) -> SpanCompare<'a> {
4701        SpanCompare::from(span).relative(relative)
4702    }
4703}
4704
4705impl<'a> From<(&'a Span, Date)> for SpanCompare<'static> {
4706    #[inline]
4707    fn from((span, date): (&'a Span, Date)) -> SpanCompare<'static> {
4708        SpanCompare::from(span).relative(date)
4709    }
4710}
4711
4712impl<'a> From<(&'a Span, DateTime)> for SpanCompare<'static> {
4713    #[inline]
4714    fn from((span, datetime): (&'a Span, DateTime)) -> SpanCompare<'static> {
4715        SpanCompare::from(span).relative(datetime)
4716    }
4717}
4718
4719impl<'a, 'b> From<(&'a Span, &'b Zoned)> for SpanCompare<'b> {
4720    #[inline]
4721    fn from((span, zoned): (&'a Span, &'b Zoned)) -> SpanCompare<'b> {
4722        SpanCompare::from(span).relative(zoned)
4723    }
4724}
4725
4726impl<'a, 'b> From<(&'a Span, SpanRelativeTo<'b>)> for SpanCompare<'b> {
4727    #[inline]
4728    fn from(
4729        (span, relative): (&'a Span, SpanRelativeTo<'b>),
4730    ) -> SpanCompare<'b> {
4731        SpanCompare::from(span).relative(relative)
4732    }
4733}
4734
4735/// Options for [`Span::total`].
4736///
4737/// This type provides a way to ergonomically determine the number of a
4738/// particular unit in a span, with a potentially fractional component, with
4739/// an optional relative datetime. Namely, a relative datetime is only needed
4740/// when the span has a non-zero calendar unit (years, months, weeks or days).
4741/// Otherwise, an error will be returned.
4742///
4743/// Callers may use [`SpanTotal::days_are_24_hours`] to opt into 24-hour
4744/// invariant days (and 7-day weeks) without providing a relative datetime.
4745///
4746/// The main way to construct values of this type is with its `From` trait
4747/// implementations:
4748///
4749/// * `From<Unit> for SpanTotal` computes a total for the given unit in the
4750/// receiver span for [`Span::total`].
4751/// * `From<(Unit, civil::Date)> for SpanTotal` computes a total for the given
4752/// unit in the receiver span for [`Span::total`], relative to the given date.
4753/// There are also `From` implementations for `civil::DateTime`, `Zoned` and
4754/// [`SpanRelativeTo`].
4755///
4756/// # Example
4757///
4758/// This example shows how to find the number of seconds in a particular span:
4759///
4760/// ```
4761/// use jiff::{ToSpan, Unit};
4762///
4763/// let span = 3.hours().minutes(10);
4764/// assert_eq!(span.total(Unit::Second)?, 11_400.0);
4765///
4766/// # Ok::<(), Box<dyn std::error::Error>>(())
4767/// ```
4768///
4769/// # Example: 24 hour days
4770///
4771/// This shows how to find the total number of 24 hour days in `123,456,789`
4772/// seconds.
4773///
4774/// ```
4775/// use jiff::{SpanTotal, ToSpan, Unit};
4776///
4777/// let span = 123_456_789.seconds();
4778/// assert_eq!(
4779///     span.total(SpanTotal::from(Unit::Day).days_are_24_hours())?,
4780///     1428.8980208333332,
4781/// );
4782///
4783/// # Ok::<(), Box<dyn std::error::Error>>(())
4784/// ```
4785///
4786/// # Example: DST is taken into account
4787///
4788/// The month of March 2024 in `America/New_York` had 31 days, but one of those
4789/// days was 23 hours long due a transition into daylight saving time:
4790///
4791/// ```
4792/// use jiff::{civil::date, ToSpan, Unit};
4793///
4794/// let span = 744.hours();
4795/// let relative = date(2024, 3, 1).in_tz("America/New_York")?;
4796/// // Because of the short day, 744 hours is actually a little *more* than
4797/// // 1 month starting from 2024-03-01.
4798/// assert_eq!(span.total((Unit::Month, &relative))?, 1.0013888888888889);
4799///
4800/// # Ok::<(), Box<dyn std::error::Error>>(())
4801/// ```
4802///
4803/// Now compare what happens when the relative datetime is civil and not
4804/// time zone aware:
4805///
4806/// ```
4807/// use jiff::{civil::date, ToSpan, Unit};
4808///
4809/// let span = 744.hours();
4810/// let relative = date(2024, 3, 1);
4811/// assert_eq!(span.total((Unit::Month, relative))?, 1.0);
4812///
4813/// # Ok::<(), Box<dyn std::error::Error>>(())
4814/// ```
4815#[derive(Clone, Copy, Debug)]
4816pub struct SpanTotal<'a> {
4817    unit: Unit,
4818    relative: Option<SpanRelativeTo<'a>>,
4819}
4820
4821impl<'a> SpanTotal<'a> {
4822    /// This is a convenience function for setting the relative option on
4823    /// this configuration to [`SpanRelativeTo::days_are_24_hours`].
4824    ///
4825    /// # Example
4826    ///
4827    /// When computing the total duration for spans involving days, either a
4828    /// relative datetime must be provided, or a special assertion opting into
4829    /// 24-hour days is required. Otherwise, you get an error.
4830    ///
4831    /// ```
4832    /// use jiff::{civil::date, SpanTotal, ToSpan, Unit};
4833    ///
4834    /// let span = 2.days().hours(12);
4835    ///
4836    /// // No relative date provided, which results in an error.
4837    /// assert_eq!(
4838    ///     span.total(Unit::Hour).unwrap_err().to_string(),
4839    ///     "using unit 'day' in a span or configuration requires that either \
4840    ///      a relative reference time be given or \
4841    ///      `SpanRelativeTo::days_are_24_hours()` is used to indicate \
4842    ///      invariant 24-hour days, but neither were provided",
4843    /// );
4844    ///
4845    /// // If we can assume all days are 24 hours, then we can assert it:
4846    /// let total = span.total(
4847    ///     SpanTotal::from(Unit::Hour).days_are_24_hours(),
4848    /// )?;
4849    /// assert_eq!(total, 60.0);
4850    ///
4851    /// // Or provide a relative datetime, which is preferred if possible:
4852    /// let total = span.total((Unit::Hour, date(2025, 1, 26)))?;
4853    /// assert_eq!(total, 60.0);
4854    ///
4855    /// # Ok::<(), Box<dyn std::error::Error>>(())
4856    /// ```
4857    #[inline]
4858    pub fn days_are_24_hours(self) -> SpanTotal<'a> {
4859        self.relative(SpanRelativeTo::days_are_24_hours())
4860    }
4861}
4862
4863impl<'a> SpanTotal<'a> {
4864    #[inline]
4865    fn new(unit: Unit) -> SpanTotal<'static> {
4866        SpanTotal { unit, relative: None }
4867    }
4868
4869    #[inline]
4870    fn relative<R: Into<SpanRelativeTo<'a>>>(
4871        self,
4872        relative: R,
4873    ) -> SpanTotal<'a> {
4874        SpanTotal { relative: Some(relative.into()), ..self }
4875    }
4876
4877    fn total(self, span: Span) -> Result<f64, Error> {
4878        let max_unit = self.unit.max(span.largest_unit());
4879        let relative = match self.relative {
4880            Some(r) => match r.to_relative(max_unit)? {
4881                Some(r) => r,
4882                None => {
4883                    return Ok(self.total_invariant(span));
4884                }
4885            },
4886            None => {
4887                requires_relative_date_err(max_unit)?;
4888                return Ok(self.total_invariant(span));
4889            }
4890        };
4891        let relspan = relative.into_relative_span(self.unit, span)?;
4892        if !self.unit.is_variable() {
4893            return Ok(self.total_invariant(relspan.span));
4894        }
4895
4896        assert!(self.unit >= Unit::Day);
4897        let sign = relspan.span.get_sign_ranged();
4898        let (relative_start, relative_end) = match relspan.kind {
4899            RelativeSpanKind::Civil { start, end } => {
4900                let start = Relative::Civil(start);
4901                let end = Relative::Civil(end);
4902                (start, end)
4903            }
4904            RelativeSpanKind::Zoned { start, end } => {
4905                let start = Relative::Zoned(start);
4906                let end = Relative::Zoned(end);
4907                (start, end)
4908            }
4909        };
4910        let (relative0, relative1) = clamp_relative_span(
4911            &relative_start,
4912            relspan.span.without_lower(self.unit),
4913            self.unit,
4914            sign.rinto(),
4915        )?;
4916        let denom = (relative1 - relative0).get() as f64;
4917        let numer = (relative_end.to_nanosecond() - relative0).get() as f64;
4918        let unit_val = relspan.span.get_units_ranged(self.unit).get() as f64;
4919        Ok(unit_val + (numer / denom) * (sign.get() as f64))
4920    }
4921
4922    #[inline]
4923    fn total_invariant(&self, span: Span) -> f64 {
4924        assert!(self.unit <= Unit::Week);
4925        let nanos = span.to_invariant_nanoseconds();
4926        (nanos.get() as f64) / (self.unit.nanoseconds().get() as f64)
4927    }
4928}
4929
4930impl From<Unit> for SpanTotal<'static> {
4931    #[inline]
4932    fn from(unit: Unit) -> SpanTotal<'static> {
4933        SpanTotal::new(unit)
4934    }
4935}
4936
4937impl From<(Unit, Date)> for SpanTotal<'static> {
4938    #[inline]
4939    fn from((unit, date): (Unit, Date)) -> SpanTotal<'static> {
4940        SpanTotal::from(unit).relative(date)
4941    }
4942}
4943
4944impl From<(Unit, DateTime)> for SpanTotal<'static> {
4945    #[inline]
4946    fn from((unit, datetime): (Unit, DateTime)) -> SpanTotal<'static> {
4947        SpanTotal::from(unit).relative(datetime)
4948    }
4949}
4950
4951impl<'a> From<(Unit, &'a Zoned)> for SpanTotal<'a> {
4952    #[inline]
4953    fn from((unit, zoned): (Unit, &'a Zoned)) -> SpanTotal<'a> {
4954        SpanTotal::from(unit).relative(zoned)
4955    }
4956}
4957
4958impl<'a> From<(Unit, SpanRelativeTo<'a>)> for SpanTotal<'a> {
4959    #[inline]
4960    fn from((unit, relative): (Unit, SpanRelativeTo<'a>)) -> SpanTotal<'a> {
4961        SpanTotal::from(unit).relative(relative)
4962    }
4963}
4964
4965/// Options for [`Span::round`].
4966///
4967/// This type provides a way to configure the rounding of a span. This
4968/// includes setting the smallest unit (i.e., the unit to round), the
4969/// largest unit, the rounding increment, the rounding mode (e.g., "ceil" or
4970/// "truncate") and the datetime that the span is relative to.
4971///
4972/// `Span::round` accepts anything that implements `Into<SpanRound>`. There are
4973/// a few key trait implementations that make this convenient:
4974///
4975/// * `From<Unit> for SpanRound` will construct a rounding configuration where
4976/// the smallest unit is set to the one given.
4977/// * `From<(Unit, i64)> for SpanRound` will construct a rounding configuration
4978/// where the smallest unit and the rounding increment are set to the ones
4979/// given.
4980///
4981/// In order to set other options (like the largest unit, the rounding mode
4982/// and the relative datetime), one must explicitly create a `SpanRound` and
4983/// pass it to `Span::round`.
4984///
4985/// # Example
4986///
4987/// This example shows how to find how many full 3 month quarters are in a
4988/// particular span of time.
4989///
4990/// ```
4991/// use jiff::{civil::date, RoundMode, SpanRound, ToSpan, Unit};
4992///
4993/// let span1 = 10.months().days(15);
4994/// let round = SpanRound::new()
4995///     .smallest(Unit::Month)
4996///     .increment(3)
4997///     .mode(RoundMode::Trunc)
4998///     // A relative datetime must be provided when
4999///     // rounding involves calendar units.
5000///     .relative(date(2024, 1, 1));
5001/// let span2 = span1.round(round)?;
5002/// assert_eq!(span2.get_months() / 3, 3);
5003///
5004/// # Ok::<(), Box<dyn std::error::Error>>(())
5005/// ```
5006#[derive(Clone, Copy, Debug)]
5007pub struct SpanRound<'a> {
5008    largest: Option<Unit>,
5009    smallest: Unit,
5010    mode: RoundMode,
5011    increment: i64,
5012    relative: Option<SpanRelativeTo<'a>>,
5013}
5014
5015impl<'a> SpanRound<'a> {
5016    /// Create a new default configuration for rounding a span via
5017    /// [`Span::round`].
5018    ///
5019    /// The default configuration does no rounding.
5020    #[inline]
5021    pub fn new() -> SpanRound<'static> {
5022        SpanRound {
5023            largest: None,
5024            smallest: Unit::Nanosecond,
5025            mode: RoundMode::HalfExpand,
5026            increment: 1,
5027            relative: None,
5028        }
5029    }
5030
5031    /// Set the smallest units allowed in the span returned. These are the
5032    /// units that the span is rounded to.
5033    ///
5034    /// # Errors
5035    ///
5036    /// The smallest units must be no greater than the largest units. If this
5037    /// is violated, then rounding a span with this configuration will result
5038    /// in an error.
5039    ///
5040    /// If a smallest unit bigger than days is selected without a relative
5041    /// datetime reference point, then an error is returned when using this
5042    /// configuration with [`Span::round`].
5043    ///
5044    /// # Example
5045    ///
5046    /// A basic example that rounds to the nearest minute:
5047    ///
5048    /// ```
5049    /// use jiff::{ToSpan, Unit};
5050    ///
5051    /// let span = 15.minutes().seconds(46);
5052    /// assert_eq!(span.round(Unit::Minute)?, 16.minutes().fieldwise());
5053    ///
5054    /// # Ok::<(), Box<dyn std::error::Error>>(())
5055    /// ```
5056    #[inline]
5057    pub fn smallest(self, unit: Unit) -> SpanRound<'a> {
5058        SpanRound { smallest: unit, ..self }
5059    }
5060
5061    /// Set the largest units allowed in the span returned.
5062    ///
5063    /// When a largest unit is not specified, then it defaults to the largest
5064    /// non-zero unit that is at least as big as the configured smallest
5065    /// unit. For example, given a span of `2 months 17 hours`, the default
5066    /// largest unit would be `Unit::Month`. The default implies that a span's
5067    /// units do not get "bigger" than what was given.
5068    ///
5069    /// Once a largest unit is set, there is no way to change this rounding
5070    /// configuration back to using the "automatic" default. Instead, callers
5071    /// must create a new configuration.
5072    ///
5073    /// If a largest unit is set and no other options are set, then the
5074    /// rounding operation can be said to be a "re-balancing." That is, the
5075    /// span won't lose precision, but the way in which it is expressed may
5076    /// change.
5077    ///
5078    /// # Errors
5079    ///
5080    /// The largest units, when set, must be at least as big as the smallest
5081    /// units (which defaults to [`Unit::Nanosecond`]). If this is violated,
5082    /// then rounding a span with this configuration will result in an error.
5083    ///
5084    /// If a largest unit bigger than days is selected without a relative
5085    /// datetime reference point, then an error is returned when using this
5086    /// configuration with [`Span::round`].
5087    ///
5088    /// # Example: re-balancing
5089    ///
5090    /// This shows how a span can be re-balanced without losing precision:
5091    ///
5092    /// ```
5093    /// use jiff::{SpanRound, ToSpan, Unit};
5094    ///
5095    /// let span = 86_401_123_456_789i64.nanoseconds();
5096    /// assert_eq!(
5097    ///     span.round(SpanRound::new().largest(Unit::Hour))?.fieldwise(),
5098    ///     24.hours().seconds(1).milliseconds(123).microseconds(456).nanoseconds(789),
5099    /// );
5100    ///
5101    /// # Ok::<(), Box<dyn std::error::Error>>(())
5102    /// ```
5103    ///
5104    /// If you need to use a largest unit bigger than hours, then you must
5105    /// provide a relative datetime as a reference point (otherwise an error
5106    /// will occur):
5107    ///
5108    /// ```
5109    /// use jiff::{civil::date, SpanRound, ToSpan, Unit};
5110    ///
5111    /// let span = 3_968_000.seconds();
5112    /// let round = SpanRound::new()
5113    ///     .largest(Unit::Day)
5114    ///     .relative(date(2024, 7, 1));
5115    /// assert_eq!(
5116    ///     span.round(round)?,
5117    ///     45.days().hours(22).minutes(13).seconds(20).fieldwise(),
5118    /// );
5119    ///
5120    /// # Ok::<(), Box<dyn std::error::Error>>(())
5121    /// ```
5122    ///
5123    /// As a special case for days, one can instead opt into invariant 24-hour
5124    /// days (and 7-day weeks) without providing an explicit relative date:
5125    ///
5126    /// ```
5127    /// use jiff::{SpanRound, ToSpan, Unit};
5128    ///
5129    /// let span = 86_401_123_456_789i64.nanoseconds();
5130    /// assert_eq!(
5131    ///     span.round(
5132    ///         SpanRound::new().largest(Unit::Day).days_are_24_hours(),
5133    ///     )?.fieldwise(),
5134    ///     1.day().seconds(1).milliseconds(123).microseconds(456).nanoseconds(789),
5135    /// );
5136    ///
5137    /// # Ok::<(), Box<dyn std::error::Error>>(())
5138    /// ```
5139    ///
5140    /// # Example: re-balancing while taking DST into account
5141    ///
5142    /// When given a zone aware relative datetime, rounding will even take
5143    /// DST into account:
5144    ///
5145    /// ```
5146    /// use jiff::{SpanRound, ToSpan, Unit, Zoned};
5147    ///
5148    /// let span = 2756.hours();
5149    /// let zdt = "2020-01-01T00:00+01:00[Europe/Rome]".parse::<Zoned>()?;
5150    /// let round = SpanRound::new().largest(Unit::Year).relative(&zdt);
5151    /// assert_eq!(
5152    ///     span.round(round)?,
5153    ///     3.months().days(23).hours(21).fieldwise(),
5154    /// );
5155    ///
5156    /// # Ok::<(), Box<dyn std::error::Error>>(())
5157    /// ```
5158    ///
5159    /// Now compare with the same operation, but on a civil datetime (which is
5160    /// not aware of time zone):
5161    ///
5162    /// ```
5163    /// use jiff::{civil::DateTime, SpanRound, ToSpan, Unit};
5164    ///
5165    /// let span = 2756.hours();
5166    /// let dt = "2020-01-01T00:00".parse::<DateTime>()?;
5167    /// let round = SpanRound::new().largest(Unit::Year).relative(dt);
5168    /// assert_eq!(
5169    ///     span.round(round)?,
5170    ///     3.months().days(23).hours(20).fieldwise(),
5171    /// );
5172    ///
5173    /// # Ok::<(), Box<dyn std::error::Error>>(())
5174    /// ```
5175    ///
5176    /// The result is 1 hour shorter. This is because, in the zone
5177    /// aware re-balancing, it accounts for the transition into DST at
5178    /// `2020-03-29T01:00Z`, which skips an hour. This makes the span one hour
5179    /// longer because one of the days in the span is actually only 23 hours
5180    /// long instead of 24 hours.
5181    #[inline]
5182    pub fn largest(self, unit: Unit) -> SpanRound<'a> {
5183        SpanRound { largest: Some(unit), ..self }
5184    }
5185
5186    /// Set the rounding mode.
5187    ///
5188    /// This defaults to [`RoundMode::HalfExpand`], which makes rounding work
5189    /// like how you were taught in school.
5190    ///
5191    /// # Example
5192    ///
5193    /// A basic example that rounds to the nearest minute, but changing its
5194    /// rounding mode to truncation:
5195    ///
5196    /// ```
5197    /// use jiff::{RoundMode, SpanRound, ToSpan, Unit};
5198    ///
5199    /// let span = 15.minutes().seconds(46);
5200    /// assert_eq!(
5201    ///     span.round(SpanRound::new()
5202    ///         .smallest(Unit::Minute)
5203    ///         .mode(RoundMode::Trunc),
5204    ///     )?,
5205    ///     // The default round mode does rounding like
5206    ///     // how you probably learned in school, and would
5207    ///     // result in rounding up to 16 minutes. But we
5208    ///     // change it to truncation here, which makes it
5209    ///     // round down.
5210    ///     15.minutes().fieldwise(),
5211    /// );
5212    ///
5213    /// # Ok::<(), Box<dyn std::error::Error>>(())
5214    /// ```
5215    #[inline]
5216    pub fn mode(self, mode: RoundMode) -> SpanRound<'a> {
5217        SpanRound { mode, ..self }
5218    }
5219
5220    /// Set the rounding increment for the smallest unit.
5221    ///
5222    /// The default value is `1`. Other values permit rounding the smallest
5223    /// unit to the nearest integer increment specified. For example, if the
5224    /// smallest unit is set to [`Unit::Minute`], then a rounding increment of
5225    /// `30` would result in rounding in increments of a half hour. That is,
5226    /// the only minute value that could result would be `0` or `30`.
5227    ///
5228    /// # Errors
5229    ///
5230    /// When the smallest unit is less than days, the rounding increment must
5231    /// divide evenly into the next highest unit after the smallest unit
5232    /// configured (and must not be equivalent to it). For example, if the
5233    /// smallest unit is [`Unit::Nanosecond`], then *some* of the valid values
5234    /// for the rounding increment are `1`, `2`, `4`, `5`, `100` and `500`.
5235    /// Namely, any integer that divides evenly into `1,000` nanoseconds since
5236    /// there are `1,000` nanoseconds in the next highest unit (microseconds).
5237    ///
5238    /// The error will occur when computing the span, and not when setting
5239    /// the increment here.
5240    ///
5241    /// # Example
5242    ///
5243    /// This shows how to round a span to the nearest 5 minute increment:
5244    ///
5245    /// ```
5246    /// use jiff::{ToSpan, Unit};
5247    ///
5248    /// let span = 4.hours().minutes(2).seconds(30);
5249    /// assert_eq!(
5250    ///     span.round((Unit::Minute, 5))?,
5251    ///     4.hours().minutes(5).fieldwise(),
5252    /// );
5253    ///
5254    /// # Ok::<(), Box<dyn std::error::Error>>(())
5255    /// ```
5256    #[inline]
5257    pub fn increment(self, increment: i64) -> SpanRound<'a> {
5258        SpanRound { increment, ..self }
5259    }
5260
5261    /// Set the relative datetime to use when rounding a span.
5262    ///
5263    /// A relative datetime is only required when calendar units (units greater
5264    /// than days) are involved. This includes having calendar units in the
5265    /// original span, or calendar units in the configured smallest or largest
5266    /// unit. A relative datetime is required when calendar units are used
5267    /// because the duration of a particular calendar unit (like 1 month or 1
5268    /// year) is variable and depends on the date. For example, 1 month from
5269    /// 2024-01-01 is 31 days, but 1 month from 2024-02-01 is 29 days.
5270    ///
5271    /// A relative datetime is provided by anything that implements
5272    /// `Into<SpanRelativeTo>`. There are a few convenience trait
5273    /// implementations provided:
5274    ///
5275    /// * `From<&Zoned> for SpanRelativeTo` uses a zone aware datetime to do
5276    /// rounding. In this case, rounding will take time zone transitions into
5277    /// account. In particular, when using a zoned relative datetime, not all
5278    /// days are necessarily 24 hours.
5279    /// * `From<civil::DateTime> for SpanRelativeTo` uses a civil datetime. In
5280    /// this case, all days will be considered 24 hours long.
5281    /// * `From<civil::Date> for SpanRelativeTo` uses a civil date. In this
5282    /// case, all days will be considered 24 hours long.
5283    ///
5284    /// Note that one can impose 24-hour days without providing a reference
5285    /// date via [`SpanRelativeTo::days_are_24_hours`].
5286    ///
5287    /// # Errors
5288    ///
5289    /// If rounding involves a calendar unit (units bigger than hours) and no
5290    /// relative datetime is provided, then this configuration will lead to
5291    /// an error when used with [`Span::round`].
5292    ///
5293    /// # Example
5294    ///
5295    /// This example shows very precisely how a DST transition can impact
5296    /// rounding and re-balancing. For example, consider the day `2024-11-03`
5297    /// in `America/New_York`. On this day, the 1 o'clock hour was repeated,
5298    /// making the day 24 hours long. This will be taken into account when
5299    /// rounding if a zoned datetime is provided as a reference point:
5300    ///
5301    /// ```
5302    /// use jiff::{SpanRound, ToSpan, Unit, Zoned};
5303    ///
5304    /// let zdt = "2024-11-03T00-04[America/New_York]".parse::<Zoned>()?;
5305    /// let round = SpanRound::new().largest(Unit::Hour).relative(&zdt);
5306    /// assert_eq!(1.day().round(round)?, 25.hours().fieldwise());
5307    ///
5308    /// # Ok::<(), Box<dyn std::error::Error>>(())
5309    /// ```
5310    ///
5311    /// And similarly for `2024-03-10`, where the 2 o'clock hour was skipped
5312    /// entirely:
5313    ///
5314    /// ```
5315    /// use jiff::{SpanRound, ToSpan, Unit, Zoned};
5316    ///
5317    /// let zdt = "2024-03-10T00-05[America/New_York]".parse::<Zoned>()?;
5318    /// let round = SpanRound::new().largest(Unit::Hour).relative(&zdt);
5319    /// assert_eq!(1.day().round(round)?, 23.hours().fieldwise());
5320    ///
5321    /// # Ok::<(), Box<dyn std::error::Error>>(())
5322    /// ```
5323    #[inline]
5324    pub fn relative<R: Into<SpanRelativeTo<'a>>>(
5325        self,
5326        relative: R,
5327    ) -> SpanRound<'a> {
5328        SpanRound { relative: Some(relative.into()), ..self }
5329    }
5330
5331    /// This is a convenience function for setting the relative option on
5332    /// this configuration to [`SpanRelativeTo::days_are_24_hours`].
5333    ///
5334    /// # Example
5335    ///
5336    /// When rounding spans involving days, either a relative datetime must be
5337    /// provided, or a special assertion opting into 24-hour days is
5338    /// required. Otherwise, you get an error.
5339    ///
5340    /// ```
5341    /// use jiff::{SpanRound, ToSpan, Unit};
5342    ///
5343    /// let span = 2.days().hours(12);
5344    /// // No relative date provided, which results in an error.
5345    /// assert_eq!(
5346    ///     span.round(Unit::Day).unwrap_err().to_string(),
5347    ///     "error with `smallest` rounding option: using unit 'day' in a \
5348    ///      span or configuration requires that either a relative reference \
5349    ///      time be given or `SpanRelativeTo::days_are_24_hours()` is used \
5350    ///      to indicate invariant 24-hour days, but neither were provided",
5351    /// );
5352    /// let rounded = span.round(
5353    ///     SpanRound::new().smallest(Unit::Day).days_are_24_hours(),
5354    /// )?;
5355    /// assert_eq!(rounded, 3.days().fieldwise());
5356    ///
5357    /// # Ok::<(), Box<dyn std::error::Error>>(())
5358    /// ```
5359    #[inline]
5360    pub fn days_are_24_hours(self) -> SpanRound<'a> {
5361        self.relative(SpanRelativeTo::days_are_24_hours())
5362    }
5363
5364    /// Returns the configured smallest unit on this round configuration.
5365    #[inline]
5366    pub(crate) fn get_smallest(&self) -> Unit {
5367        self.smallest
5368    }
5369
5370    /// Returns the configured largest unit on this round configuration.
5371    #[inline]
5372    pub(crate) fn get_largest(&self) -> Option<Unit> {
5373        self.largest
5374    }
5375
5376    /// Returns true only when rounding a span *may* change it. When it
5377    /// returns false, and if the span is already balanced according to
5378    /// the largest unit in this round configuration, then it is guaranteed
5379    /// that rounding is a no-op.
5380    ///
5381    /// This is useful to avoid rounding calls after doing span arithmetic
5382    /// on datetime types. This works because the "largest" unit is used to
5383    /// construct a balanced span for the difference between two datetimes.
5384    /// So we already know the span has been balanced. If this weren't the
5385    /// case, then the largest unit being different from the one in the span
5386    /// could result in rounding making a change. (And indeed, in the general
5387    /// case of span rounding below, we do a more involved check for this.)
5388    #[inline]
5389    pub(crate) fn rounding_may_change_span_ignore_largest(&self) -> bool {
5390        self.smallest > Unit::Nanosecond || self.increment > 1
5391    }
5392
5393    /// Does the actual span rounding.
5394    fn round(&self, span: Span) -> Result<Span, Error> {
5395        let existing_largest = span.largest_unit();
5396        let mode = self.mode;
5397        let smallest = self.smallest;
5398        let largest =
5399            self.largest.unwrap_or_else(|| smallest.max(existing_largest));
5400        let max = existing_largest.max(largest);
5401        let increment = increment::for_span(smallest, self.increment)?;
5402        if largest < smallest {
5403            return Err(err!(
5404                "largest unit ('{largest}') cannot be smaller than \
5405                 smallest unit ('{smallest}')",
5406                largest = largest.singular(),
5407                smallest = smallest.singular(),
5408            ));
5409        }
5410        let relative = match self.relative {
5411            Some(ref r) => {
5412                match r.to_relative(max)? {
5413                    Some(r) => r,
5414                    None => {
5415                        // If our reference point is civil time, then its units
5416                        // are invariant as long as we are using day-or-lower
5417                        // everywhere. That is, the length of the duration is
5418                        // independent of the reference point. In which case,
5419                        // rounding is a simple matter of converting the span
5420                        // to a number of nanoseconds and then rounding that.
5421                        return Ok(round_span_invariant(
5422                            span, smallest, largest, increment, mode,
5423                        )?);
5424                    }
5425                }
5426            }
5427            None => {
5428                // This is only okay if none of our units are above 'day'.
5429                // That is, a reference point is only necessary when there is
5430                // no reasonable invariant interpretation of the span. And this
5431                // is only true when everything is less than 'day'.
5432                requires_relative_date_err(smallest)
5433                    .context("error with `smallest` rounding option")?;
5434                if let Some(largest) = self.largest {
5435                    requires_relative_date_err(largest)
5436                        .context("error with `largest` rounding option")?;
5437                }
5438                requires_relative_date_err(existing_largest).context(
5439                    "error with largest unit in span to be rounded",
5440                )?;
5441                assert!(max <= Unit::Week);
5442                return Ok(round_span_invariant(
5443                    span, smallest, largest, increment, mode,
5444                )?);
5445            }
5446        };
5447        relative.round(span, smallest, largest, increment, mode)
5448    }
5449}
5450
5451impl Default for SpanRound<'static> {
5452    fn default() -> SpanRound<'static> {
5453        SpanRound::new()
5454    }
5455}
5456
5457impl From<Unit> for SpanRound<'static> {
5458    fn from(unit: Unit) -> SpanRound<'static> {
5459        SpanRound::default().smallest(unit)
5460    }
5461}
5462
5463impl From<(Unit, i64)> for SpanRound<'static> {
5464    fn from((unit, increment): (Unit, i64)) -> SpanRound<'static> {
5465        SpanRound::default().smallest(unit).increment(increment)
5466    }
5467}
5468
5469/// A relative datetime for use with [`Span`] APIs.
5470///
5471/// A relative datetime can be one of the following: [`civil::Date`](Date),
5472/// [`civil::DateTime`](DateTime) or [`Zoned`]. It can be constructed from any
5473/// of the preceding types via `From` trait implementations.
5474///
5475/// A relative datetime is used to indicate how the calendar units of a `Span`
5476/// should be interpreted. For example, the span "1 month" does not have a
5477/// fixed meaning. One month from `2024-03-01` is 31 days, but one month from
5478/// `2024-04-01` is 30 days. Similar for years.
5479///
5480/// When a relative datetime in time zone aware (i.e., it is a `Zoned`), then
5481/// a `Span` will also consider its day units to be variable in length. For
5482/// example, `2024-03-10` in `America/New_York` was only 23 hours long, where
5483/// as `2024-11-03` in `America/New_York` was 25 hours long. When a relative
5484/// datetime is civil, then days are considered to always be of a fixed 24
5485/// hour length.
5486///
5487/// This type is principally used as an input to one of several different
5488/// [`Span`] APIs:
5489///
5490/// * [`Span::round`] rounds spans. A relative datetime is necessary when
5491/// dealing with calendar units. (But spans without calendar units can be
5492/// rounded without providing a relative datetime.)
5493/// * Span arithmetic via [`Span::checked_add`] and [`Span::checked_sub`].
5494/// A relative datetime is needed when adding or subtracting spans with
5495/// calendar units.
5496/// * Span comarisons via [`Span::compare`] require a relative datetime when
5497/// comparing spans with calendar units.
5498/// * Computing the "total" duration as a single floating point number via
5499/// [`Span::total`] also requires a relative datetime when dealing with
5500/// calendar units.
5501///
5502/// # Example
5503///
5504/// This example shows how to round a span with larger calendar units to
5505/// smaller units:
5506///
5507/// ```
5508/// use jiff::{SpanRound, ToSpan, Unit, Zoned};
5509///
5510/// let zdt: Zoned = "2012-01-01[Antarctica/Troll]".parse()?;
5511/// let round = SpanRound::new().largest(Unit::Day).relative(&zdt);
5512/// assert_eq!(1.year().round(round)?, 366.days().fieldwise());
5513///
5514/// // If you tried this without a relative datetime, it would fail:
5515/// let round = SpanRound::new().largest(Unit::Day);
5516/// assert!(1.year().round(round).is_err());
5517///
5518/// # Ok::<(), Box<dyn std::error::Error>>(())
5519/// ```
5520#[derive(Clone, Copy, Debug)]
5521pub struct SpanRelativeTo<'a> {
5522    kind: SpanRelativeToKind<'a>,
5523}
5524
5525impl<'a> SpanRelativeTo<'a> {
5526    /// Creates a special marker that indicates all days ought to be assumed
5527    /// to be 24 hours without providing a relative reference time.
5528    ///
5529    /// This is relevant to the following APIs:
5530    ///
5531    /// * [`Span::checked_add`]
5532    /// * [`Span::checked_sub`]
5533    /// * [`Span::compare`]
5534    /// * [`Span::total`]
5535    /// * [`Span::round`]
5536    /// * [`Span::to_duration`]
5537    ///
5538    /// Specifically, in a previous version of Jiff, the above APIs permitted
5539    /// _silently_ assuming that days are always 24 hours when a relative
5540    /// reference date wasn't provided. In the current version of Jiff, this
5541    /// silent interpretation no longer happens and instead an error will
5542    /// occur.
5543    ///
5544    /// If you need to use these APIs with spans that contain non-zero units
5545    /// of days or weeks but without a relative reference date, then you may
5546    /// use this routine to create a special marker for `SpanRelativeTo` that
5547    /// permits the APIs above to assume days are always 24 hours.
5548    ///
5549    /// # Motivation
5550    ///
5551    /// The purpose of the marker is two-fold:
5552    ///
5553    /// * Requiring the marker is important for improving the consistency of
5554    /// `Span` APIs. Previously, some APIs (like [`Timestamp::checked_add`])
5555    /// would always return an error if the `Span` given had non-zero
5556    /// units of days or greater. On the other hand, other APIs (like
5557    /// [`Span::checked_add`]) would autoamtically assume days were always
5558    /// 24 hours if no relative reference time was given and either span had
5559    /// non-zero units of days. With this marker, APIs _never_ assume days are
5560    /// always 24 hours automatically.
5561    /// * When it _is_ appropriate to assume all days are 24 hours
5562    /// (for example, when only dealing with spans derived from
5563    /// [`civil`](crate::civil) datetimes) and where providing a relative
5564    /// reference datetime doesn't make sense. In this case, one _could_
5565    /// provide a "dummy" reference date since the precise date in civil time
5566    /// doesn't impact the length of a day. But a marker like the one returned
5567    /// here is more explicit for the purpose of assuming days are always 24
5568    /// hours.
5569    ///
5570    /// With that said, ideally, callers should provide a relative reference
5571    /// datetime if possible.
5572    ///
5573    /// See [Issue #48] for more discussion on this topic.
5574    ///
5575    /// # Example: different interpretations of "1 day"
5576    ///
5577    /// This example shows how "1 day" can be interpreted differently via the
5578    /// [`Span::total`] API:
5579    ///
5580    /// ```
5581    /// use jiff::{SpanRelativeTo, ToSpan, Unit, Zoned};
5582    ///
5583    /// let span = 1.day();
5584    ///
5585    /// // An error because days aren't always 24 hours:
5586    /// assert_eq!(
5587    ///     span.total(Unit::Hour).unwrap_err().to_string(),
5588    ///     "using unit 'day' in a span or configuration requires that either \
5589    ///      a relative reference time be given or \
5590    ///      `SpanRelativeTo::days_are_24_hours()` is used to indicate \
5591    ///      invariant 24-hour days, but neither were provided",
5592    /// );
5593    /// // Opt into invariant 24 hour days without a relative date:
5594    /// let marker = SpanRelativeTo::days_are_24_hours();
5595    /// let hours = span.total((Unit::Hour, marker))?;
5596    /// assert_eq!(hours, 24.0);
5597    /// // Days can be shorter than 24 hours:
5598    /// let zdt: Zoned = "2024-03-10[America/New_York]".parse()?;
5599    /// let hours = span.total((Unit::Hour, &zdt))?;
5600    /// assert_eq!(hours, 23.0);
5601    /// // Days can be longer than 24 hours:
5602    /// let zdt: Zoned = "2024-11-03[America/New_York]".parse()?;
5603    /// let hours = span.total((Unit::Hour, &zdt))?;
5604    /// assert_eq!(hours, 25.0);
5605    ///
5606    /// # Ok::<(), Box<dyn std::error::Error>>(())
5607    /// ```
5608    ///
5609    /// Similar behavior applies to the other APIs listed above.
5610    ///
5611    /// # Example: different interpretations of "1 week"
5612    ///
5613    /// This example shows how "1 week" can be interpreted differently via the
5614    /// [`Span::total`] API:
5615    ///
5616    /// ```
5617    /// use jiff::{SpanRelativeTo, ToSpan, Unit, Zoned};
5618    ///
5619    /// let span = 1.week();
5620    ///
5621    /// // An error because days aren't always 24 hours:
5622    /// assert_eq!(
5623    ///     span.total(Unit::Hour).unwrap_err().to_string(),
5624    ///     "using unit 'week' in a span or configuration requires that either \
5625    ///      a relative reference time be given or \
5626    ///      `SpanRelativeTo::days_are_24_hours()` is used to indicate \
5627    ///      invariant 24-hour days, but neither were provided",
5628    /// );
5629    /// // Opt into invariant 24 hour days without a relative date:
5630    /// let marker = SpanRelativeTo::days_are_24_hours();
5631    /// let hours = span.total((Unit::Hour, marker))?;
5632    /// assert_eq!(hours, 168.0);
5633    /// // Weeks can be shorter than 24*7 hours:
5634    /// let zdt: Zoned = "2024-03-10[America/New_York]".parse()?;
5635    /// let hours = span.total((Unit::Hour, &zdt))?;
5636    /// assert_eq!(hours, 167.0);
5637    /// // Weeks can be longer than 24*7 hours:
5638    /// let zdt: Zoned = "2024-11-03[America/New_York]".parse()?;
5639    /// let hours = span.total((Unit::Hour, &zdt))?;
5640    /// assert_eq!(hours, 169.0);
5641    ///
5642    /// # Ok::<(), Box<dyn std::error::Error>>(())
5643    /// ```
5644    ///
5645    /// # Example: working with [`civil::Date`](crate::civil::Date)
5646    ///
5647    /// A `Span` returned by computing the difference in time between two
5648    /// [`civil::Date`](crate::civil::Date)s will have a non-zero number of
5649    /// days. In older versions of Jiff, if one wanted to add spans returned by
5650    /// these APIs, you could do so without futzing with relative dates. But
5651    /// now you either need to provide a relative date:
5652    ///
5653    /// ```
5654    /// use jiff::{civil::date, ToSpan};
5655    ///
5656    /// let d1 = date(2025, 1, 18);
5657    /// let d2 = date(2025, 1, 26);
5658    /// let d3 = date(2025, 2, 14);
5659    ///
5660    /// let span1 = d2 - d1;
5661    /// let span2 = d3 - d2;
5662    /// let total = span1.checked_add((span2, d1))?;
5663    /// assert_eq!(total, 27.days().fieldwise());
5664    ///
5665    /// # Ok::<(), Box<dyn std::error::Error>>(())
5666    /// ```
5667    ///
5668    /// Or you can provide a marker indicating that days are always 24 hours.
5669    /// This is fine for this use case since one is only doing civil calendar
5670    /// arithmetic and not working with time zones:
5671    ///
5672    /// ```
5673    /// use jiff::{civil::date, SpanRelativeTo, ToSpan};
5674    ///
5675    /// let d1 = date(2025, 1, 18);
5676    /// let d2 = date(2025, 1, 26);
5677    /// let d3 = date(2025, 2, 14);
5678    ///
5679    /// let span1 = d2 - d1;
5680    /// let span2 = d3 - d2;
5681    /// let total = span1.checked_add(
5682    ///     (span2, SpanRelativeTo::days_are_24_hours()),
5683    /// )?;
5684    /// assert_eq!(total, 27.days().fieldwise());
5685    ///
5686    /// # Ok::<(), Box<dyn std::error::Error>>(())
5687    /// ```
5688    ///
5689    /// [Issue #48]: https://github.com/BurntSushi/jiff/issues/48
5690    #[inline]
5691    pub const fn days_are_24_hours() -> SpanRelativeTo<'static> {
5692        let kind = SpanRelativeToKind::DaysAre24Hours;
5693        SpanRelativeTo { kind }
5694    }
5695
5696    /// Converts this public API relative datetime into a more versatile
5697    /// internal representation of the same concept.
5698    ///
5699    /// Basically, the internal `Relative` type is `Cow` which means it isn't
5700    /// `Copy`. But it can present a more uniform API. The public API type
5701    /// doesn't have `Cow` so that it can be `Copy`.
5702    ///
5703    /// We also take this opportunity to attach some convenient data, such
5704    /// as a timestamp when the relative datetime type is civil.
5705    ///
5706    /// This can return `None` if this `SpanRelativeTo` isn't actually a
5707    /// datetime but a "marker" indicating some unit (like days) should be
5708    /// treated as invariant. Or `None` is returned when the given unit is
5709    /// always invariant (hours or smaller).
5710    ///
5711    /// # Errors
5712    ///
5713    /// If there was a problem doing this conversion, then an error is
5714    /// returned. In practice, this only occurs for a civil datetime near the
5715    /// civil datetime minimum and maximum values.
5716    fn to_relative(&self, unit: Unit) -> Result<Option<Relative<'a>>, Error> {
5717        if !unit.is_variable() {
5718            return Ok(None);
5719        }
5720        match self.kind {
5721            SpanRelativeToKind::Civil(dt) => {
5722                Ok(Some(Relative::Civil(RelativeCivil::new(dt)?)))
5723            }
5724            SpanRelativeToKind::Zoned(zdt) => {
5725                Ok(Some(Relative::Zoned(RelativeZoned {
5726                    zoned: DumbCow::Borrowed(zdt),
5727                })))
5728            }
5729            SpanRelativeToKind::DaysAre24Hours => {
5730                if matches!(unit, Unit::Year | Unit::Month) {
5731                    return Err(err!(
5732                        "using unit '{unit}' in span or configuration \
5733                         requires that a relative reference time be given \
5734                         (`SpanRelativeTo::days_are_24_hours()` was given \
5735                         but this only permits using days and weeks \
5736                         without a relative reference time)",
5737                        unit = unit.singular(),
5738                    ));
5739                }
5740                Ok(None)
5741            }
5742        }
5743    }
5744}
5745
5746#[derive(Clone, Copy, Debug)]
5747enum SpanRelativeToKind<'a> {
5748    Civil(DateTime),
5749    Zoned(&'a Zoned),
5750    DaysAre24Hours,
5751}
5752
5753impl<'a> From<&'a Zoned> for SpanRelativeTo<'a> {
5754    fn from(zdt: &'a Zoned) -> SpanRelativeTo<'a> {
5755        SpanRelativeTo { kind: SpanRelativeToKind::Zoned(zdt) }
5756    }
5757}
5758
5759impl From<DateTime> for SpanRelativeTo<'static> {
5760    fn from(dt: DateTime) -> SpanRelativeTo<'static> {
5761        SpanRelativeTo { kind: SpanRelativeToKind::Civil(dt) }
5762    }
5763}
5764
5765impl From<Date> for SpanRelativeTo<'static> {
5766    fn from(date: Date) -> SpanRelativeTo<'static> {
5767        let dt = DateTime::from_parts(date, Time::midnight());
5768        SpanRelativeTo { kind: SpanRelativeToKind::Civil(dt) }
5769    }
5770}
5771
5772impl<'a> core::fmt::Display for SpanRelativeToKind<'a> {
5773    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
5774        match *self {
5775            SpanRelativeToKind::Civil(dt) => core::fmt::Display::fmt(&dt, f),
5776            SpanRelativeToKind::Zoned(zdt) => core::fmt::Display::fmt(zdt, f),
5777            SpanRelativeToKind::DaysAre24Hours => write!(f, "TODO"),
5778        }
5779    }
5780}
5781
5782/// A bit set that keeps track of all non-zero units on a `Span`.
5783///
5784/// Because of alignment, adding this to a `Span` does not make it any bigger.
5785///
5786/// The benefit of this bit set is to make it extremely cheap to enable fast
5787/// paths in various places. For example, doing arithmetic on a `Date` with an
5788/// arbitrary `Span` is pretty involved. But if you know the `Span` only
5789/// consists of non-zero units of days (and zero for all other units), then you
5790/// can take a much cheaper path.
5791#[derive(Clone, Copy)]
5792pub(crate) struct UnitSet(u16);
5793
5794impl UnitSet {
5795    /// Return a bit set representing all units as zero.
5796    #[inline]
5797    fn empty() -> UnitSet {
5798        UnitSet(0)
5799    }
5800
5801    /// Set the given `unit` to `is_zero` status in this set.
5802    ///
5803    /// When `is_zero` is false, the unit is added to this set. Otherwise,
5804    /// the unit is removed from this set.
5805    #[inline]
5806    fn set(self, unit: Unit, is_zero: bool) -> UnitSet {
5807        let bit = 1 << unit as usize;
5808        if is_zero {
5809            UnitSet(self.0 & !bit)
5810        } else {
5811            UnitSet(self.0 | bit)
5812        }
5813    }
5814
5815    /// Returns true if and only if no units are in this set.
5816    #[inline]
5817    pub(crate) fn is_empty(&self) -> bool {
5818        self.0 == 0
5819    }
5820
5821    /// Returns true if and only if this `Span` contains precisely one
5822    /// non-zero unit corresponding to the unit given.
5823    #[inline]
5824    pub(crate) fn contains_only(self, unit: Unit) -> bool {
5825        self.0 == (1 << unit as usize)
5826    }
5827
5828    /// Returns this set, but with only calendar units.
5829    #[inline]
5830    pub(crate) fn only_calendar(self) -> UnitSet {
5831        UnitSet(self.0 & 0b0000_0011_1100_0000)
5832    }
5833
5834    /// Returns this set, but with only time units.
5835    #[inline]
5836    pub(crate) fn only_time(self) -> UnitSet {
5837        UnitSet(self.0 & 0b0000_0000_0011_1111)
5838    }
5839
5840    /// Returns the largest unit in this set, or `None` if none are present.
5841    #[inline]
5842    pub(crate) fn largest_unit(self) -> Option<Unit> {
5843        let zeros = usize::try_from(self.0.leading_zeros()).ok()?;
5844        15usize.checked_sub(zeros).and_then(Unit::from_usize)
5845    }
5846}
5847
5848// N.B. This `Debug` impl isn't typically used.
5849//
5850// This is because the `Debug` impl for `Span` just emits itself in the
5851// friendly duration format, which doesn't include internal representation
5852// details like this set. It is included in `Span::debug`, but this isn't
5853// part of the public crate API.
5854impl core::fmt::Debug for UnitSet {
5855    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
5856        write!(f, "{{")?;
5857        let mut units = *self;
5858        let mut i = 0;
5859        while let Some(unit) = units.largest_unit() {
5860            if i > 0 {
5861                write!(f, ", ")?;
5862            }
5863            i += 1;
5864            write!(f, "{}", unit.compact())?;
5865            units = units.set(unit, false);
5866        }
5867        if i == 0 {
5868            write!(f, "∅")?;
5869        }
5870        write!(f, "}}")
5871    }
5872}
5873
5874/// An internal abstraction for managing a relative datetime for use in some
5875/// `Span` APIs.
5876///
5877/// This is effectively the same as a `SpanRelativeTo`, but uses a `Cow<Zoned>`
5878/// instead of a `&Zoned`. This makes it non-`Copy`, but allows us to craft a
5879/// more uniform API. (i.e., `relative + span = relative` instead of `relative
5880/// + span = owned_relative` or whatever.) Note that the `Copy` impl on
5881/// `SpanRelativeTo` means it has to accept a `&Zoned`. It can't ever take a
5882/// `Zoned` since it is non-Copy.
5883///
5884/// NOTE: Separately from above, I think it's plausible that this type could be
5885/// designed a bit differently. Namely, something like this:
5886///
5887/// ```text
5888/// struct Relative<'a> {
5889///     tz: Option<&'a TimeZone>,
5890///     dt: DateTime,
5891///     ts: Timestamp,
5892/// }
5893/// ```
5894///
5895/// That is, we do zone aware stuff but without an actual `Zoned` type. But I
5896/// think in order to make that work, we would need to expose most of the
5897/// `Zoned` API as functions on its component types (DateTime, Timestamp and
5898/// TimeZone). I think we are likely to want to do that for public API reasons,
5899/// but I'd like to resist it since I think it will add a lot of complexity.
5900/// Or maybe we need a `Unzoned` type that is `DateTime` and `Timestamp`, but
5901/// requires passing the time zone in to each of its methods. That might work
5902/// quite well, even if it was just an internal type.
5903///
5904/// Anyway, I'm not 100% sure the above would work, but I think it would. It
5905/// would be nicer because everything would be `Copy` all the time. We'd never
5906/// need a `Cow<TimeZone>` for example, because we never need to change or
5907/// create a new time zone.
5908#[derive(Clone, Debug)]
5909enum Relative<'a> {
5910    Civil(RelativeCivil),
5911    Zoned(RelativeZoned<'a>),
5912}
5913
5914impl<'a> Relative<'a> {
5915    /// Adds the given span to this relative datetime.
5916    ///
5917    /// This defers to either [`DateTime::checked_add`] or
5918    /// [`Zoned::checked_add`], depending on the type of relative datetime.
5919    ///
5920    /// The `Relative` datetime returned is guaranteed to have the same
5921    /// internal datetie type as `self`.
5922    ///
5923    /// # Errors
5924    ///
5925    /// This returns an error in the same cases as the underlying checked
5926    /// arithmetic APIs. In general, this occurs when adding the given `span`
5927    /// would result in overflow.
5928    fn checked_add(&self, span: Span) -> Result<Relative, Error> {
5929        match *self {
5930            Relative::Civil(dt) => Ok(Relative::Civil(dt.checked_add(span)?)),
5931            Relative::Zoned(ref zdt) => {
5932                Ok(Relative::Zoned(zdt.checked_add(span)?))
5933            }
5934        }
5935    }
5936
5937    fn checked_add_duration(
5938        &self,
5939        duration: SignedDuration,
5940    ) -> Result<Relative, Error> {
5941        match *self {
5942            Relative::Civil(dt) => {
5943                Ok(Relative::Civil(dt.checked_add_duration(duration)?))
5944            }
5945            Relative::Zoned(ref zdt) => {
5946                Ok(Relative::Zoned(zdt.checked_add_duration(duration)?))
5947            }
5948        }
5949    }
5950
5951    /// Returns the span of time from this relative datetime to the one given,
5952    /// with units as large as `largest`.
5953    ///
5954    /// # Errors
5955    ///
5956    /// This returns an error in the same cases as when the underlying
5957    /// [`DateTime::until`] or [`Zoned::until`] fail. Because this doesn't
5958    /// set or expose any rounding configuration, this can generally only
5959    /// occur when `largest` is `Unit::Nanosecond` and the span of time
5960    /// between `self` and `other` is too big to represent as a 64-bit integer
5961    /// nanosecond count.
5962    ///
5963    /// # Panics
5964    ///
5965    /// This panics if `self` and `other` are different internal datetime
5966    /// types. For example, if `self` was a civil datetime and `other` were
5967    /// a zoned datetime.
5968    fn until(&self, largest: Unit, other: &Relative) -> Result<Span, Error> {
5969        match (self, other) {
5970            (&Relative::Civil(ref dt1), &Relative::Civil(ref dt2)) => {
5971                dt1.until(largest, dt2)
5972            }
5973            (&Relative::Zoned(ref zdt1), &Relative::Zoned(ref zdt2)) => {
5974                zdt1.until(largest, zdt2)
5975            }
5976            // This would be bad if `Relative` were a public API, but in
5977            // practice, this case never occurs because we don't mixup our
5978            // `Relative` datetime types.
5979            _ => unreachable!(),
5980        }
5981    }
5982
5983    /// Converts this relative datetime to a nanosecond in UTC time.
5984    ///
5985    /// # Errors
5986    ///
5987    /// If there was a problem doing this conversion, then an error is
5988    /// returned. In practice, this only occurs for a civil datetime near the
5989    /// civil datetime minimum and maximum values.
5990    fn to_nanosecond(&self) -> NoUnits128 {
5991        match *self {
5992            Relative::Civil(dt) => dt.timestamp.as_nanosecond_ranged().rinto(),
5993            Relative::Zoned(ref zdt) => {
5994                zdt.zoned.timestamp().as_nanosecond_ranged().rinto()
5995            }
5996        }
5997    }
5998
5999    /// Create a balanced span of time relative to this datetime.
6000    ///
6001    /// The relative span returned has the same internal datetime type
6002    /// (civil or zoned) as this relative datetime.
6003    ///
6004    /// # Errors
6005    ///
6006    /// This returns an error when the span in this range cannot be
6007    /// represented. In general, this only occurs when asking for largest units
6008    /// of `Unit::Nanosecond` *and* when the span is too big to fit into a
6009    /// 64-bit nanosecond count.
6010    ///
6011    /// This can also return an error in other extreme cases, such as when
6012    /// adding the given span to this relative datetime results in overflow,
6013    /// or if this relative datetime is a civil datetime and it couldn't be
6014    /// converted to a timestamp in UTC.
6015    fn into_relative_span(
6016        self,
6017        largest: Unit,
6018        span: Span,
6019    ) -> Result<RelativeSpan<'a>, Error> {
6020        let kind = match self {
6021            Relative::Civil(start) => {
6022                let end = start.checked_add(span)?;
6023                RelativeSpanKind::Civil { start, end }
6024            }
6025            Relative::Zoned(start) => {
6026                let end = start.checked_add(span)?;
6027                RelativeSpanKind::Zoned { start, end }
6028            }
6029        };
6030        let relspan = kind.into_relative_span(largest)?;
6031        if span.get_sign_ranged() != 0
6032            && relspan.span.get_sign_ranged() != 0
6033            && span.get_sign_ranged() != relspan.span.get_sign_ranged()
6034        {
6035            // I haven't quite figured out when this case is hit. I think it's
6036            // actually impossible right? Balancing a duration should not flip
6037            // the sign.
6038            //
6039            // ref: https://github.com/fullcalendar/temporal-polyfill/blob/9e001042864394247181d1a5d591c18057ce32d2/packages/temporal-polyfill/src/internal/durationMath.ts#L236-L238
6040            unreachable!(
6041                "balanced span should have same sign as original span"
6042            )
6043        }
6044        Ok(relspan)
6045    }
6046
6047    /// Rounds the given span using the given rounding configuration.
6048    fn round(
6049        self,
6050        span: Span,
6051        smallest: Unit,
6052        largest: Unit,
6053        increment: NoUnits128,
6054        mode: RoundMode,
6055    ) -> Result<Span, Error> {
6056        let relspan = self.into_relative_span(largest, span)?;
6057        if relspan.span.get_sign_ranged() == 0 {
6058            return Ok(relspan.span);
6059        }
6060        let nudge = match relspan.kind {
6061            RelativeSpanKind::Civil { start, end } => {
6062                if smallest > Unit::Day {
6063                    Nudge::relative_calendar(
6064                        relspan.span,
6065                        &Relative::Civil(start),
6066                        &Relative::Civil(end),
6067                        smallest,
6068                        increment,
6069                        mode,
6070                    )?
6071                } else {
6072                    let relative_end = end.timestamp.as_nanosecond_ranged();
6073                    Nudge::relative_invariant(
6074                        relspan.span,
6075                        relative_end.rinto(),
6076                        smallest,
6077                        largest,
6078                        increment,
6079                        mode,
6080                    )?
6081                }
6082            }
6083            RelativeSpanKind::Zoned { ref start, ref end } => {
6084                if smallest >= Unit::Day {
6085                    Nudge::relative_calendar(
6086                        relspan.span,
6087                        // FIXME: Find a way to drop these clones.
6088                        &Relative::Zoned(start.clone()),
6089                        &Relative::Zoned(end.clone()),
6090                        smallest,
6091                        increment,
6092                        mode,
6093                    )?
6094                } else if largest >= Unit::Day {
6095                    // This is a special case for zoned datetimes when rounding
6096                    // could bleed into variable units.
6097                    Nudge::relative_zoned_time(
6098                        relspan.span,
6099                        start,
6100                        smallest,
6101                        increment,
6102                        mode,
6103                    )?
6104                } else {
6105                    // Otherwise, rounding is the same as civil datetime.
6106                    let relative_end =
6107                        end.zoned.timestamp().as_nanosecond_ranged();
6108                    Nudge::relative_invariant(
6109                        relspan.span,
6110                        relative_end.rinto(),
6111                        smallest,
6112                        largest,
6113                        increment,
6114                        mode,
6115                    )?
6116                }
6117            }
6118        };
6119        nudge.bubble(&relspan, smallest, largest)
6120    }
6121}
6122
6123/// A balanced span between a range of civil or zoned datetimes.
6124///
6125/// The span is always balanced up to a certain unit as given to
6126/// `RelativeSpanKind::into_relative_span`.
6127#[derive(Clone, Debug)]
6128struct RelativeSpan<'a> {
6129    span: Span,
6130    kind: RelativeSpanKind<'a>,
6131}
6132
6133/// A civil or zoned datetime range of time.
6134#[derive(Clone, Debug)]
6135enum RelativeSpanKind<'a> {
6136    Civil { start: RelativeCivil, end: RelativeCivil },
6137    Zoned { start: RelativeZoned<'a>, end: RelativeZoned<'a> },
6138}
6139
6140impl<'a> RelativeSpanKind<'a> {
6141    /// Create a balanced `RelativeSpan` from this range of time.
6142    ///
6143    /// # Errors
6144    ///
6145    /// This returns an error when the span in this range cannot be
6146    /// represented. In general, this only occurs when asking for largest units
6147    /// of `Unit::Nanosecond` *and* when the span is too big to fit into a
6148    /// 64-bit nanosecond count.
6149    fn into_relative_span(
6150        self,
6151        largest: Unit,
6152    ) -> Result<RelativeSpan<'a>, Error> {
6153        let span = match self {
6154            RelativeSpanKind::Civil { ref start, ref end } => start
6155                .datetime
6156                .until((largest, end.datetime))
6157                .with_context(|| {
6158                    err!(
6159                        "failed to get span between {start} and {end} \
6160                         with largest unit as {unit}",
6161                        start = start.datetime,
6162                        end = end.datetime,
6163                        unit = largest.plural(),
6164                    )
6165                })?,
6166            RelativeSpanKind::Zoned { ref start, ref end } => start
6167                .zoned
6168                .until((largest, &*end.zoned))
6169                .with_context(|| {
6170                    err!(
6171                        "failed to get span between {start} and {end} \
6172                         with largest unit as {unit}",
6173                        start = start.zoned,
6174                        end = end.zoned,
6175                        unit = largest.plural(),
6176                    )
6177                })?,
6178        };
6179        Ok(RelativeSpan { span, kind: self })
6180    }
6181}
6182
6183/// A wrapper around a civil datetime and a timestamp corresponding to that
6184/// civil datetime in UTC.
6185///
6186/// Haphazardly interpreting a civil datetime in UTC is an odd and *usually*
6187/// incorrect thing to do. But the way we use it here is basically just to give
6188/// it an "anchoring" point such that we can represent it using a single
6189/// integer for rounding purposes. It is only used in a context *relative* to
6190/// another civil datetime interpreted in UTC. In this fashion, the selection
6191/// of UTC specifically doesn't really matter. We could use any time zone.
6192/// (Although, it must be a time zone without any transitions, otherwise we
6193/// could wind up with time zone aware results in a context where that would
6194/// be unexpected since this is civil time.)
6195#[derive(Clone, Copy, Debug)]
6196struct RelativeCivil {
6197    datetime: DateTime,
6198    timestamp: Timestamp,
6199}
6200
6201impl RelativeCivil {
6202    /// Creates a new relative wrapper around the given civil datetime.
6203    ///
6204    /// This wrapper bundles a timestamp for the given datetime by interpreting
6205    /// it as being in UTC. This is an "odd" thing to do, but it's only used
6206    /// in the context of determining the length of time between two civil
6207    /// datetimes. So technically, any time zone without transitions could be
6208    /// used.
6209    ///
6210    /// # Errors
6211    ///
6212    /// This returns an error if the datetime could not be converted to a
6213    /// timestamp. This only occurs near the minimum and maximum civil datetime
6214    /// values.
6215    fn new(datetime: DateTime) -> Result<RelativeCivil, Error> {
6216        let timestamp = datetime
6217            .to_zoned(TimeZone::UTC)
6218            .with_context(|| {
6219                err!("failed to convert {datetime} to timestamp")
6220            })?
6221            .timestamp();
6222        Ok(RelativeCivil { datetime, timestamp })
6223    }
6224
6225    /// Returns the result of [`DateTime::checked_add`].
6226    ///
6227    /// # Errors
6228    ///
6229    /// Returns an error in the same cases as `DateTime::checked_add`. That is,
6230    /// when adding the span to this zoned datetime would overflow.
6231    ///
6232    /// This also returns an error if the resulting datetime could not be
6233    /// converted to a timestamp in UTC. This only occurs near the minimum and
6234    /// maximum datetime values.
6235    fn checked_add(&self, span: Span) -> Result<RelativeCivil, Error> {
6236        let datetime = self.datetime.checked_add(span).with_context(|| {
6237            err!("failed to add {span} to {dt}", dt = self.datetime)
6238        })?;
6239        let timestamp = datetime
6240            .to_zoned(TimeZone::UTC)
6241            .with_context(|| {
6242                err!("failed to convert {datetime} to timestamp")
6243            })?
6244            .timestamp();
6245        Ok(RelativeCivil { datetime, timestamp })
6246    }
6247
6248    /// Returns the result of [`DateTime::checked_add`] with an absolute
6249    /// duration.
6250    ///
6251    /// # Errors
6252    ///
6253    /// Returns an error in the same cases as `DateTime::checked_add`. That is,
6254    /// when adding the span to this zoned datetime would overflow.
6255    ///
6256    /// This also returns an error if the resulting datetime could not be
6257    /// converted to a timestamp in UTC. This only occurs near the minimum and
6258    /// maximum datetime values.
6259    fn checked_add_duration(
6260        &self,
6261        duration: SignedDuration,
6262    ) -> Result<RelativeCivil, Error> {
6263        let datetime =
6264            self.datetime.checked_add(duration).with_context(|| {
6265                err!("failed to add {duration:?} to {dt}", dt = self.datetime)
6266            })?;
6267        let timestamp = datetime
6268            .to_zoned(TimeZone::UTC)
6269            .with_context(|| {
6270                err!("failed to convert {datetime} to timestamp")
6271            })?
6272            .timestamp();
6273        Ok(RelativeCivil { datetime, timestamp })
6274    }
6275
6276    /// Returns the result of [`DateTime::until`].
6277    ///
6278    /// # Errors
6279    ///
6280    /// Returns an error in the same cases as `DateTime::until`. That is, when
6281    /// the span for the given largest unit cannot be represented. This can
6282    /// generally only happen when `largest` is `Unit::Nanosecond` and the span
6283    /// cannot be represented as a 64-bit integer of nanoseconds.
6284    fn until(
6285        &self,
6286        largest: Unit,
6287        other: &RelativeCivil,
6288    ) -> Result<Span, Error> {
6289        self.datetime.until((largest, other.datetime)).with_context(|| {
6290            err!(
6291                "failed to get span between {dt1} and {dt2} \
6292                 with largest unit as {unit}",
6293                unit = largest.plural(),
6294                dt1 = self.datetime,
6295                dt2 = other.datetime,
6296            )
6297        })
6298    }
6299}
6300
6301/// A simple wrapper around a possibly borrowed `Zoned`.
6302#[derive(Clone, Debug)]
6303struct RelativeZoned<'a> {
6304    zoned: DumbCow<'a, Zoned>,
6305}
6306
6307impl<'a> RelativeZoned<'a> {
6308    /// Returns the result of [`Zoned::checked_add`].
6309    ///
6310    /// # Errors
6311    ///
6312    /// Returns an error in the same cases as `Zoned::checked_add`. That is,
6313    /// when adding the span to this zoned datetime would overflow.
6314    fn checked_add(
6315        &self,
6316        span: Span,
6317    ) -> Result<RelativeZoned<'static>, Error> {
6318        let zoned = self.zoned.checked_add(span).with_context(|| {
6319            err!("failed to add {span} to {zoned}", zoned = self.zoned)
6320        })?;
6321        Ok(RelativeZoned { zoned: DumbCow::Owned(zoned) })
6322    }
6323
6324    /// Returns the result of [`Zoned::checked_add`] with an absolute duration.
6325    ///
6326    /// # Errors
6327    ///
6328    /// Returns an error in the same cases as `Zoned::checked_add`. That is,
6329    /// when adding the span to this zoned datetime would overflow.
6330    fn checked_add_duration(
6331        &self,
6332        duration: SignedDuration,
6333    ) -> Result<RelativeZoned<'static>, Error> {
6334        let zoned = self.zoned.checked_add(duration).with_context(|| {
6335            err!("failed to add {duration:?} to {zoned}", zoned = self.zoned)
6336        })?;
6337        Ok(RelativeZoned { zoned: DumbCow::Owned(zoned) })
6338    }
6339
6340    /// Returns the result of [`Zoned::until`].
6341    ///
6342    /// # Errors
6343    ///
6344    /// Returns an error in the same cases as `Zoned::until`. That is, when
6345    /// the span for the given largest unit cannot be represented. This can
6346    /// generally only happen when `largest` is `Unit::Nanosecond` and the span
6347    /// cannot be represented as a 64-bit integer of nanoseconds.
6348    fn until(
6349        &self,
6350        largest: Unit,
6351        other: &RelativeZoned<'a>,
6352    ) -> Result<Span, Error> {
6353        self.zoned.until((largest, &*other.zoned)).with_context(|| {
6354            err!(
6355                "failed to get span between {zdt1} and {zdt2} \
6356                 with largest unit as {unit}",
6357                unit = largest.plural(),
6358                zdt1 = self.zoned,
6359                zdt2 = other.zoned,
6360            )
6361        })
6362    }
6363}
6364
6365// The code below is the "core" rounding logic for spans. It was greatly
6366// inspired by this gist[1] and the fullcalendar Temporal polyfill[2]. In
6367// particular, the algorithm implemented below is a major simplification from
6368// how Temporal used to work[3]. Parts of it are still in rough and unclear
6369// shape IMO.
6370//
6371// [1]: https://gist.github.com/arshaw/36d3152c21482bcb78ea2c69591b20e0
6372// [2]: https://github.com/fullcalendar/temporal-polyfill
6373// [3]: https://github.com/tc39/proposal-temporal/issues/2792
6374
6375/// The result of a span rounding strategy. There are three:
6376///
6377/// * Rounding spans relative to civil datetimes using only invariant
6378/// units (days or less). This is achieved by converting the span to a simple
6379/// integer number of nanoseconds and then rounding that.
6380/// * Rounding spans relative to either a civil datetime or a zoned datetime
6381/// where rounding might involve changing non-uniform units. That is, when
6382/// the smallest unit is greater than days for civil datetimes and greater
6383/// than hours for zoned datetimes.
6384/// * Rounding spans relative to a zoned datetime whose smallest unit is
6385/// less than days.
6386///
6387/// Each of these might produce a bottom heavy span that needs to be
6388/// re-balanced. This type represents that result via one of three constructors
6389/// corresponding to each of the above strategies, and then provides a routine
6390/// for rebalancing via "bubbling."
6391#[derive(Debug)]
6392struct Nudge {
6393    /// A possibly bottom heavy rounded span.
6394    span: Span,
6395    /// The nanosecond timestamp corresponding to `relative + span`, where
6396    /// `span` is the (possibly bottom heavy) rounded span.
6397    rounded_relative_end: NoUnits128,
6398    /// Whether rounding may have created a bottom heavy span such that a
6399    /// calendar unit might need to be incremented after re-balancing smaller
6400    /// units.
6401    grew_big_unit: bool,
6402}
6403
6404impl Nudge {
6405    /// Performs rounding on the given span limited to invariant units.
6406    ///
6407    /// For civil datetimes, this means the smallest unit must be days or less,
6408    /// but the largest unit can be bigger. For zoned datetimes, this means
6409    /// that *both* the largest and smallest unit must be hours or less. This
6410    /// is because zoned datetimes with rounding that can spill up to days
6411    /// requires special handling.
6412    ///
6413    /// It works by converting the span to a single integer number of
6414    /// nanoseconds, rounding it and then converting back to a span.
6415    fn relative_invariant(
6416        balanced: Span,
6417        relative_end: NoUnits128,
6418        smallest: Unit,
6419        largest: Unit,
6420        increment: NoUnits128,
6421        mode: RoundMode,
6422    ) -> Result<Nudge, Error> {
6423        // Ensures this is only called when rounding invariant units.
6424        assert!(smallest <= Unit::Week);
6425
6426        let sign = balanced.get_sign_ranged();
6427        let balanced_nanos = balanced.to_invariant_nanoseconds();
6428        let rounded_nanos = mode.round_by_unit_in_nanoseconds(
6429            balanced_nanos,
6430            smallest,
6431            increment,
6432        );
6433        let span = Span::from_invariant_nanoseconds(largest, rounded_nanos)
6434            .with_context(|| {
6435                err!(
6436                    "failed to convert rounded nanoseconds {rounded_nanos} \
6437                     to span for largest unit as {unit}",
6438                    unit = largest.plural(),
6439                )
6440            })?
6441            .years_ranged(balanced.get_years_ranged())
6442            .months_ranged(balanced.get_months_ranged())
6443            .weeks_ranged(balanced.get_weeks_ranged());
6444
6445        let diff_nanos = rounded_nanos - balanced_nanos;
6446        let diff_days = rounded_nanos.div_ceil(t::NANOS_PER_CIVIL_DAY)
6447            - balanced_nanos.div_ceil(t::NANOS_PER_CIVIL_DAY);
6448        let grew_big_unit = diff_days.signum() == sign;
6449        let rounded_relative_end = relative_end + diff_nanos;
6450        Ok(Nudge { span, rounded_relative_end, grew_big_unit })
6451    }
6452
6453    /// Performs rounding on the given span where the smallest unit configured
6454    /// implies that rounding will cover calendar or "non-uniform" units. (That
6455    /// is, units whose length can change based on the relative datetime.)
6456    fn relative_calendar(
6457        balanced: Span,
6458        relative_start: &Relative<'_>,
6459        relative_end: &Relative<'_>,
6460        smallest: Unit,
6461        increment: NoUnits128,
6462        mode: RoundMode,
6463    ) -> Result<Nudge, Error> {
6464        #[cfg(not(feature = "std"))]
6465        use crate::util::libm::Float;
6466
6467        assert!(smallest >= Unit::Day);
6468        let sign = balanced.get_sign_ranged();
6469        let truncated = increment
6470            * balanced.get_units_ranged(smallest).div_ceil(increment);
6471        let span = balanced
6472            .without_lower(smallest)
6473            .try_units_ranged(smallest, truncated)
6474            .with_context(|| {
6475                err!(
6476                    "failed to set {unit} to {truncated} on span {balanced}",
6477                    unit = smallest.singular()
6478                )
6479            })?;
6480        let (relative0, relative1) = clamp_relative_span(
6481            relative_start,
6482            span,
6483            smallest,
6484            NoUnits::try_rfrom("increment", increment)?
6485                .try_checked_mul("signed increment", sign)?,
6486        )?;
6487
6488        // FIXME: This is brutal. This is the only non-optional floating point
6489        // used so far in Jiff. We do expose floating point for things like
6490        // `Span::total`, but that's optional and not a core part of Jiff's
6491        // functionality. This is in the core part of Jiff's span rounding...
6492        let denom = (relative1 - relative0).get() as f64;
6493        let numer = (relative_end.to_nanosecond() - relative0).get() as f64;
6494        let exact = (truncated.get() as f64)
6495            + (numer / denom) * (sign.get() as f64) * (increment.get() as f64);
6496        let rounded = mode.round_float(exact, increment);
6497        let grew_big_unit =
6498            ((rounded.get() as f64) - exact).signum() == (sign.get() as f64);
6499
6500        let span =
6501            span.try_units_ranged(smallest, rounded).with_context(|| {
6502                err!(
6503                    "failed to set {unit} to {truncated} on span {span}",
6504                    unit = smallest.singular()
6505                )
6506            })?;
6507        let rounded_relative_end =
6508            if grew_big_unit { relative1 } else { relative0 };
6509        Ok(Nudge { span, rounded_relative_end, grew_big_unit })
6510    }
6511
6512    /// Performs rounding on the given span where the smallest unit is hours
6513    /// or less *and* the relative datetime is time zone aware.
6514    fn relative_zoned_time(
6515        balanced: Span,
6516        relative_start: &RelativeZoned<'_>,
6517        smallest: Unit,
6518        increment: NoUnits128,
6519        mode: RoundMode,
6520    ) -> Result<Nudge, Error> {
6521        let sign = balanced.get_sign_ranged();
6522        let time_nanos =
6523            balanced.only_lower(Unit::Day).to_invariant_nanoseconds();
6524        let mut rounded_time_nanos =
6525            mode.round_by_unit_in_nanoseconds(time_nanos, smallest, increment);
6526        let (relative0, relative1) = clamp_relative_span(
6527            // FIXME: Find a way to drop this clone.
6528            &Relative::Zoned(relative_start.clone()),
6529            balanced.without_lower(Unit::Day),
6530            Unit::Day,
6531            sign.rinto(),
6532        )?;
6533        let day_nanos = relative1 - relative0;
6534        let beyond_day_nanos = rounded_time_nanos - day_nanos;
6535
6536        let mut day_delta = NoUnits::N::<0>();
6537        let rounded_relative_end =
6538            if beyond_day_nanos == 0 || beyond_day_nanos.signum() == sign {
6539                day_delta += C(1);
6540                rounded_time_nanos = mode.round_by_unit_in_nanoseconds(
6541                    beyond_day_nanos,
6542                    smallest,
6543                    increment,
6544                );
6545                relative1 + rounded_time_nanos
6546            } else {
6547                relative0 + rounded_time_nanos
6548            };
6549
6550        let span =
6551            Span::from_invariant_nanoseconds(Unit::Hour, rounded_time_nanos)
6552                .with_context(|| {
6553                    err!(
6554                        "failed to convert rounded nanoseconds \
6555                     {rounded_time_nanos} to span for largest unit as {unit}",
6556                        unit = Unit::Hour.plural(),
6557                    )
6558                })?
6559                .years_ranged(balanced.get_years_ranged())
6560                .months_ranged(balanced.get_months_ranged())
6561                .weeks_ranged(balanced.get_weeks_ranged())
6562                .days_ranged(balanced.get_days_ranged() + day_delta);
6563        let grew_big_unit = day_delta != 0;
6564        Ok(Nudge { span, rounded_relative_end, grew_big_unit })
6565    }
6566
6567    /// This "bubbles" up the units in a potentially "bottom heavy" span to
6568    /// larger units. For example, P1m50d relative to March 1 is bottom heavy.
6569    /// This routine will bubble the days up to months to get P2m19d.
6570    ///
6571    /// # Errors
6572    ///
6573    /// This routine fails if any arithmetic on the individual units fails, or
6574    /// when span arithmetic on the relative datetime given fails.
6575    fn bubble(
6576        &self,
6577        relative: &RelativeSpan,
6578        smallest: Unit,
6579        largest: Unit,
6580    ) -> Result<Span, Error> {
6581        if !self.grew_big_unit || smallest == Unit::Week {
6582            return Ok(self.span);
6583        }
6584
6585        let smallest = smallest.max(Unit::Day);
6586        let mut balanced = self.span;
6587        let sign = balanced.get_sign_ranged();
6588        let mut unit = smallest;
6589        while let Some(u) = unit.next() {
6590            unit = u;
6591            if unit > largest {
6592                break;
6593            }
6594            // We only bubble smaller units up into weeks when the largest unit
6595            // is explicitly set to weeks. Otherwise, we leave it as-is.
6596            if unit == Unit::Week && largest != Unit::Week {
6597                continue;
6598            }
6599
6600            let span_start = balanced.without_lower(unit);
6601            let new_units = span_start
6602                .get_units_ranged(unit)
6603                .try_checked_add("bubble-units", sign)
6604                .with_context(|| {
6605                    err!(
6606                        "failed to add sign {sign} to {unit} value {value}",
6607                        unit = unit.plural(),
6608                        value = span_start.get_units_ranged(unit),
6609                    )
6610                })?;
6611            let span_end = span_start
6612                .try_units_ranged(unit, new_units)
6613                .with_context(|| {
6614                    err!(
6615                        "failed to set {unit} to value \
6616                         {new_units} on span {span_start}",
6617                        unit = unit.plural(),
6618                    )
6619                })?;
6620            let threshold = match relative.kind {
6621                RelativeSpanKind::Civil { ref start, .. } => {
6622                    start.checked_add(span_end)?.timestamp
6623                }
6624                RelativeSpanKind::Zoned { ref start, .. } => {
6625                    start.checked_add(span_end)?.zoned.timestamp()
6626                }
6627            };
6628            let beyond =
6629                self.rounded_relative_end - threshold.as_nanosecond_ranged();
6630            if beyond == 0 || beyond.signum() == sign {
6631                balanced = span_end;
6632            } else {
6633                break;
6634            }
6635        }
6636        Ok(balanced)
6637    }
6638}
6639
6640/// Rounds a span consisting of only invariant units.
6641///
6642/// This only applies when the max of the units in the span being rounded,
6643/// the largest configured unit and the smallest configured unit are all
6644/// invariant. That is, days or lower for spans without a relative datetime or
6645/// a relative civil datetime, and hours or lower for spans with a relative
6646/// zoned datetime.
6647///
6648/// All we do here is convert the span to an integer number of nanoseconds,
6649/// round that and then convert back. There aren't any tricky corner cases to
6650/// consider here.
6651fn round_span_invariant(
6652    span: Span,
6653    smallest: Unit,
6654    largest: Unit,
6655    increment: NoUnits128,
6656    mode: RoundMode,
6657) -> Result<Span, Error> {
6658    assert!(smallest <= Unit::Week);
6659    assert!(largest <= Unit::Week);
6660    let nanos = span.to_invariant_nanoseconds();
6661    let rounded =
6662        mode.round_by_unit_in_nanoseconds(nanos, smallest, increment);
6663    Span::from_invariant_nanoseconds(largest, rounded).with_context(|| {
6664        err!(
6665            "failed to convert rounded nanoseconds {rounded} \
6666             to span for largest unit as {unit}",
6667            unit = largest.plural(),
6668        )
6669    })
6670}
6671
6672/// Returns the nanosecond timestamps of `relative + span` and `relative +
6673/// {amount of unit} + span`.
6674///
6675/// This is useful for determining the actual length, in nanoseconds, of some
6676/// unit amount (usually a single unit). Usually, this is called with a span
6677/// whose units lower than `unit` are zeroed out and with an `amount` that
6678/// is `-1` or `1` or `0`. So for example, if `unit` were `Unit::Day`, then
6679/// you'd get back two nanosecond timestamps relative to the relative datetime
6680/// given that start exactly "one day" apart. (Which might be different than 24
6681/// hours, depending on the time zone.)
6682///
6683/// # Errors
6684///
6685/// This returns an error if adding the units overflows, or if doing the span
6686/// arithmetic on `relative` overflows.
6687fn clamp_relative_span(
6688    relative: &Relative<'_>,
6689    span: Span,
6690    unit: Unit,
6691    amount: NoUnits,
6692) -> Result<(NoUnits128, NoUnits128), Error> {
6693    let amount = span
6694        .get_units_ranged(unit)
6695        .try_checked_add("clamp-units", amount)
6696        .with_context(|| {
6697            err!(
6698                "failed to add {amount} to {unit} \
6699                 value {value} on span {span}",
6700                unit = unit.plural(),
6701                value = span.get_units_ranged(unit),
6702            )
6703        })?;
6704    let span_amount =
6705        span.try_units_ranged(unit, amount).with_context(|| {
6706            err!(
6707                "failed to set {unit} unit to {amount} on span {span}",
6708                unit = unit.plural(),
6709            )
6710        })?;
6711    let relative0 = relative.checked_add(span)?.to_nanosecond();
6712    let relative1 = relative.checked_add(span_amount)?.to_nanosecond();
6713    Ok((relative0, relative1))
6714}
6715
6716/// A common parsing function that works in bytes.
6717///
6718/// Specifically, this parses either an ISO 8601 duration into a `Span` or
6719/// a "friendly" duration into a `Span`. It also tries to give decent error
6720/// messages.
6721///
6722/// This works because the friendly and ISO 8601 formats have non-overlapping
6723/// prefixes. Both can start with a `+` or `-`, but aside from that, an ISO
6724/// 8601 duration _always_ has to start with a `P` or `p`. We can utilize this
6725/// property to very quickly determine how to parse the input. We just need to
6726/// handle the possibly ambiguous case with a leading sign a little carefully
6727/// in order to ensure good error messages.
6728///
6729/// (We do the same thing for `SignedDuration`.)
6730#[inline(always)]
6731fn parse_iso_or_friendly(bytes: &[u8]) -> Result<Span, Error> {
6732    if bytes.is_empty() {
6733        return Err(err!(
6734            "an empty string is not a valid `Span`, \
6735             expected either a ISO 8601 or Jiff's 'friendly' \
6736             format",
6737        ));
6738    }
6739    let mut first = bytes[0];
6740    if first == b'+' || first == b'-' {
6741        if bytes.len() == 1 {
6742            return Err(err!(
6743                "found nothing after sign `{sign}`, \
6744                 which is not a valid `Span`, \
6745                 expected either a ISO 8601 or Jiff's 'friendly' \
6746                 format",
6747                sign = escape::Byte(first),
6748            ));
6749        }
6750        first = bytes[1];
6751    }
6752    if first == b'P' || first == b'p' {
6753        temporal::DEFAULT_SPAN_PARSER.parse_span(bytes)
6754    } else {
6755        friendly::DEFAULT_SPAN_PARSER.parse_span(bytes)
6756    }
6757}
6758
6759fn requires_relative_date_err(unit: Unit) -> Result<(), Error> {
6760    if unit.is_variable() {
6761        return Err(if matches!(unit, Unit::Week | Unit::Day) {
6762            err!(
6763                "using unit '{unit}' in a span or configuration \
6764                 requires that either a relative reference time be given \
6765                 or `SpanRelativeTo::days_are_24_hours()` is used to \
6766                 indicate invariant 24-hour days, \
6767                 but neither were provided",
6768                unit = unit.singular(),
6769            )
6770        } else {
6771            err!(
6772                "using unit '{unit}' in a span or configuration \
6773                 requires that a relative reference time be given, \
6774                 but none was provided",
6775                unit = unit.singular(),
6776            )
6777        });
6778    }
6779    Ok(())
6780}
6781
6782#[cfg(test)]
6783mod tests {
6784    use std::io::Cursor;
6785
6786    use alloc::string::ToString;
6787
6788    use crate::{civil::date, RoundMode};
6789
6790    use super::*;
6791
6792    #[test]
6793    fn test_total() {
6794        if crate::tz::db().is_definitively_empty() {
6795            return;
6796        }
6797
6798        let span = 130.hours().minutes(20);
6799        let total = span.total(Unit::Second).unwrap();
6800        assert_eq!(total, 469200.0);
6801
6802        let span = 123456789.seconds();
6803        let total = span
6804            .total(SpanTotal::from(Unit::Day).days_are_24_hours())
6805            .unwrap();
6806        assert_eq!(total, 1428.8980208333332);
6807
6808        let span = 2756.hours();
6809        let dt = date(2020, 1, 1).at(0, 0, 0, 0);
6810        let zdt = dt.in_tz("Europe/Rome").unwrap();
6811        let total = span.total((Unit::Month, &zdt)).unwrap();
6812        assert_eq!(total, 3.7958333333333334);
6813        let total = span.total((Unit::Month, dt)).unwrap();
6814        assert_eq!(total, 3.7944444444444443);
6815    }
6816
6817    #[test]
6818    fn test_compare() {
6819        if crate::tz::db().is_definitively_empty() {
6820            return;
6821        }
6822
6823        let span1 = 79.hours().minutes(10);
6824        let span2 = 79.hours().seconds(630);
6825        let span3 = 78.hours().minutes(50);
6826        let mut array = [span1, span2, span3];
6827        array.sort_by(|sp1, sp2| sp1.compare(sp2).unwrap());
6828        assert_eq!(array, [span3, span1, span2].map(SpanFieldwise));
6829
6830        let day24 = SpanRelativeTo::days_are_24_hours();
6831        let span1 = 79.hours().minutes(10);
6832        let span2 = 3.days().hours(7).seconds(630);
6833        let span3 = 3.days().hours(6).minutes(50);
6834        let mut array = [span1, span2, span3];
6835        array.sort_by(|sp1, sp2| sp1.compare((sp2, day24)).unwrap());
6836        assert_eq!(array, [span3, span1, span2].map(SpanFieldwise));
6837
6838        let dt = date(2020, 11, 1).at(0, 0, 0, 0);
6839        let zdt = dt.in_tz("America/Los_Angeles").unwrap();
6840        array.sort_by(|sp1, sp2| sp1.compare((sp2, &zdt)).unwrap());
6841        assert_eq!(array, [span1, span3, span2].map(SpanFieldwise));
6842    }
6843
6844    #[test]
6845    fn test_checked_add() {
6846        let span1 = 1.hour();
6847        let span2 = 30.minutes();
6848        let sum = span1.checked_add(span2).unwrap();
6849        span_eq!(sum, 1.hour().minutes(30));
6850
6851        let span1 = 1.hour().minutes(30);
6852        let span2 = 2.hours().minutes(45);
6853        let sum = span1.checked_add(span2).unwrap();
6854        span_eq!(sum, 4.hours().minutes(15));
6855
6856        let span = 50
6857            .years()
6858            .months(50)
6859            .days(50)
6860            .hours(50)
6861            .minutes(50)
6862            .seconds(50)
6863            .milliseconds(500)
6864            .microseconds(500)
6865            .nanoseconds(500);
6866        let relative = date(1900, 1, 1).at(0, 0, 0, 0);
6867        let sum = span.checked_add((span, relative)).unwrap();
6868        let expected = 108
6869            .years()
6870            .months(7)
6871            .days(12)
6872            .hours(5)
6873            .minutes(41)
6874            .seconds(41)
6875            .milliseconds(1)
6876            .microseconds(1)
6877            .nanoseconds(0);
6878        span_eq!(sum, expected);
6879
6880        let span = 1.month().days(15);
6881        let relative = date(2000, 2, 1).at(0, 0, 0, 0);
6882        let sum = span.checked_add((span, relative)).unwrap();
6883        span_eq!(sum, 3.months());
6884        let relative = date(2000, 3, 1).at(0, 0, 0, 0);
6885        let sum = span.checked_add((span, relative)).unwrap();
6886        span_eq!(sum, 2.months().days(30));
6887    }
6888
6889    #[test]
6890    fn test_round_day_time() {
6891        let span = 29.seconds();
6892        let rounded = span.round(Unit::Minute).unwrap();
6893        span_eq!(rounded, 0.minute());
6894
6895        let span = 30.seconds();
6896        let rounded = span.round(Unit::Minute).unwrap();
6897        span_eq!(rounded, 1.minute());
6898
6899        let span = 8.seconds();
6900        let rounded = span
6901            .round(
6902                SpanRound::new()
6903                    .smallest(Unit::Nanosecond)
6904                    .largest(Unit::Microsecond),
6905            )
6906            .unwrap();
6907        span_eq!(rounded, 8_000_000.microseconds());
6908
6909        let span = 130.minutes();
6910        let rounded = span
6911            .round(SpanRound::new().largest(Unit::Day).days_are_24_hours())
6912            .unwrap();
6913        span_eq!(rounded, 2.hours().minutes(10));
6914
6915        let span = 10.minutes().seconds(52);
6916        let rounded = span.round(Unit::Minute).unwrap();
6917        span_eq!(rounded, 11.minutes());
6918
6919        let span = 10.minutes().seconds(52);
6920        let rounded = span
6921            .round(
6922                SpanRound::new().smallest(Unit::Minute).mode(RoundMode::Trunc),
6923            )
6924            .unwrap();
6925        span_eq!(rounded, 10.minutes());
6926
6927        let span = 2.hours().minutes(34).seconds(18);
6928        let rounded =
6929            span.round(SpanRound::new().largest(Unit::Second)).unwrap();
6930        span_eq!(rounded, 9258.seconds());
6931
6932        let span = 6.minutes();
6933        let rounded = span
6934            .round(
6935                SpanRound::new()
6936                    .smallest(Unit::Minute)
6937                    .increment(5)
6938                    .mode(RoundMode::Ceil),
6939            )
6940            .unwrap();
6941        span_eq!(rounded, 10.minutes());
6942    }
6943
6944    #[test]
6945    fn test_round_relative_zoned_calendar() {
6946        if crate::tz::db().is_definitively_empty() {
6947            return;
6948        }
6949
6950        let span = 2756.hours();
6951        let relative =
6952            date(2020, 1, 1).at(0, 0, 0, 0).in_tz("America/New_York").unwrap();
6953        let options = SpanRound::new()
6954            .largest(Unit::Year)
6955            .smallest(Unit::Day)
6956            .relative(&relative);
6957        let rounded = span.round(options).unwrap();
6958        span_eq!(rounded, 3.months().days(24));
6959
6960        let span = 24.hours().nanoseconds(5);
6961        let relative = date(2000, 10, 29)
6962            .at(0, 0, 0, 0)
6963            .in_tz("America/Vancouver")
6964            .unwrap();
6965        let options = SpanRound::new()
6966            .largest(Unit::Day)
6967            .smallest(Unit::Minute)
6968            .relative(&relative)
6969            .mode(RoundMode::Expand)
6970            .increment(30);
6971        let rounded = span.round(options).unwrap();
6972        // It seems like this is the correct answer, although it apparently
6973        // differs from Temporal and the FullCalendar polyfill. I'm not sure
6974        // what accounts for the difference in the implementation.
6975        //
6976        // See: https://github.com/tc39/proposal-temporal/pull/2758#discussion_r1597255245
6977        span_eq!(rounded, 24.hours().minutes(30));
6978
6979        // Ref: https://github.com/tc39/proposal-temporal/issues/2816#issuecomment-2115608460
6980        let span = -1.month().hours(24);
6981        let relative: crate::Zoned = date(2024, 4, 11)
6982            .at(2, 0, 0, 0)
6983            .in_tz("America/New_York")
6984            .unwrap();
6985        let options =
6986            SpanRound::new().smallest(Unit::Millisecond).relative(&relative);
6987        let rounded = span.round(options).unwrap();
6988        span_eq!(rounded, -1.month().days(1).hours(1));
6989        let dt = relative.checked_add(span).unwrap();
6990        let diff = relative.until((Unit::Month, &dt)).unwrap();
6991        span_eq!(diff, -1.month().days(1).hours(1));
6992
6993        // Like the above, but don't use a datetime near a DST transition. In
6994        // this case, a day is a normal 24 hours. (Unlike above, where the
6995        // duration includes a 23 hour day, and so an additional hour has to be
6996        // added to the span to account for that.)
6997        let span = -1.month().hours(24);
6998        let relative = date(2024, 6, 11)
6999            .at(2, 0, 0, 0)
7000            .in_tz("America/New_York")
7001            .unwrap();
7002        let options =
7003            SpanRound::new().smallest(Unit::Millisecond).relative(&relative);
7004        let rounded = span.round(options).unwrap();
7005        span_eq!(rounded, -1.month().days(1));
7006    }
7007
7008    #[test]
7009    fn test_round_relative_zoned_time() {
7010        if crate::tz::db().is_definitively_empty() {
7011            return;
7012        }
7013
7014        let span = 2756.hours();
7015        let relative =
7016            date(2020, 1, 1).at(0, 0, 0, 0).in_tz("America/New_York").unwrap();
7017        let options = SpanRound::new().largest(Unit::Year).relative(&relative);
7018        let rounded = span.round(options).unwrap();
7019        span_eq!(rounded, 3.months().days(23).hours(21));
7020
7021        let span = 2756.hours();
7022        let relative =
7023            date(2020, 9, 1).at(0, 0, 0, 0).in_tz("America/New_York").unwrap();
7024        let options = SpanRound::new().largest(Unit::Year).relative(&relative);
7025        let rounded = span.round(options).unwrap();
7026        span_eq!(rounded, 3.months().days(23).hours(19));
7027
7028        let span = 3.hours();
7029        let relative =
7030            date(2020, 3, 8).at(0, 0, 0, 0).in_tz("America/New_York").unwrap();
7031        let options = SpanRound::new().largest(Unit::Year).relative(&relative);
7032        let rounded = span.round(options).unwrap();
7033        span_eq!(rounded, 3.hours());
7034    }
7035
7036    #[test]
7037    fn test_round_relative_day_time() {
7038        let span = 2756.hours();
7039        let options =
7040            SpanRound::new().largest(Unit::Year).relative(date(2020, 1, 1));
7041        let rounded = span.round(options).unwrap();
7042        span_eq!(rounded, 3.months().days(23).hours(20));
7043
7044        let span = 2756.hours();
7045        let options =
7046            SpanRound::new().largest(Unit::Year).relative(date(2020, 9, 1));
7047        let rounded = span.round(options).unwrap();
7048        span_eq!(rounded, 3.months().days(23).hours(20));
7049
7050        let span = 190.days();
7051        let options =
7052            SpanRound::new().largest(Unit::Year).relative(date(2020, 1, 1));
7053        let rounded = span.round(options).unwrap();
7054        span_eq!(rounded, 6.months().days(8));
7055
7056        let span = 30
7057            .days()
7058            .hours(23)
7059            .minutes(59)
7060            .seconds(59)
7061            .milliseconds(999)
7062            .microseconds(999)
7063            .nanoseconds(999);
7064        let options = SpanRound::new()
7065            .smallest(Unit::Microsecond)
7066            .largest(Unit::Year)
7067            .relative(date(2024, 5, 1));
7068        let rounded = span.round(options).unwrap();
7069        span_eq!(rounded, 1.month());
7070
7071        let span = 364
7072            .days()
7073            .hours(23)
7074            .minutes(59)
7075            .seconds(59)
7076            .milliseconds(999)
7077            .microseconds(999)
7078            .nanoseconds(999);
7079        let options = SpanRound::new()
7080            .smallest(Unit::Microsecond)
7081            .largest(Unit::Year)
7082            .relative(date(2023, 1, 1));
7083        let rounded = span.round(options).unwrap();
7084        span_eq!(rounded, 1.year());
7085
7086        let span = 365
7087            .days()
7088            .hours(23)
7089            .minutes(59)
7090            .seconds(59)
7091            .milliseconds(999)
7092            .microseconds(999)
7093            .nanoseconds(999);
7094        let options = SpanRound::new()
7095            .smallest(Unit::Microsecond)
7096            .largest(Unit::Year)
7097            .relative(date(2023, 1, 1));
7098        let rounded = span.round(options).unwrap();
7099        span_eq!(rounded, 1.year().days(1));
7100
7101        let span = 365
7102            .days()
7103            .hours(23)
7104            .minutes(59)
7105            .seconds(59)
7106            .milliseconds(999)
7107            .microseconds(999)
7108            .nanoseconds(999);
7109        let options = SpanRound::new()
7110            .smallest(Unit::Microsecond)
7111            .largest(Unit::Year)
7112            .relative(date(2024, 1, 1));
7113        let rounded = span.round(options).unwrap();
7114        span_eq!(rounded, 1.year());
7115
7116        let span = 3.hours();
7117        let options =
7118            SpanRound::new().largest(Unit::Year).relative(date(2020, 3, 8));
7119        let rounded = span.round(options).unwrap();
7120        span_eq!(rounded, 3.hours());
7121    }
7122
7123    #[test]
7124    fn span_sign() {
7125        assert_eq!(Span::new().get_sign_ranged(), 0);
7126        assert_eq!(Span::new().days(1).get_sign_ranged(), 1);
7127        assert_eq!(Span::new().days(-1).get_sign_ranged(), -1);
7128        assert_eq!(Span::new().days(1).days(0).get_sign_ranged(), 0);
7129        assert_eq!(Span::new().days(-1).days(0).get_sign_ranged(), 0);
7130        assert_eq!(Span::new().years(1).days(1).days(0).get_sign_ranged(), 1);
7131        assert_eq!(
7132            Span::new().years(-1).days(-1).days(0).get_sign_ranged(),
7133            -1
7134        );
7135    }
7136
7137    #[test]
7138    fn span_size() {
7139        #[cfg(target_pointer_width = "64")]
7140        {
7141            #[cfg(debug_assertions)]
7142            {
7143                assert_eq!(core::mem::align_of::<Span>(), 8);
7144                assert_eq!(core::mem::size_of::<Span>(), 184);
7145            }
7146            #[cfg(not(debug_assertions))]
7147            {
7148                assert_eq!(core::mem::align_of::<Span>(), 8);
7149                assert_eq!(core::mem::size_of::<Span>(), 64);
7150            }
7151        }
7152    }
7153
7154    quickcheck::quickcheck! {
7155        fn prop_roundtrip_span_nanoseconds(span: Span) -> quickcheck::TestResult {
7156            let largest = span.largest_unit();
7157            if largest > Unit::Day {
7158                return quickcheck::TestResult::discard();
7159            }
7160            let nanos = span.to_invariant_nanoseconds();
7161            let got = Span::from_invariant_nanoseconds(largest, nanos).unwrap();
7162            quickcheck::TestResult::from_bool(nanos == got.to_invariant_nanoseconds())
7163        }
7164    }
7165
7166    /// # `serde` deserializer compatibility test
7167    ///
7168    /// Serde YAML used to be unable to deserialize `jiff` types,
7169    /// as deserializing from bytes is not supported by the deserializer.
7170    ///
7171    /// - <https://github.com/BurntSushi/jiff/issues/138>
7172    /// - <https://github.com/BurntSushi/jiff/discussions/148>
7173    #[test]
7174    fn span_deserialize_yaml() {
7175        let expected = Span::new()
7176            .years(1)
7177            .months(2)
7178            .weeks(3)
7179            .days(4)
7180            .hours(5)
7181            .minutes(6)
7182            .seconds(7);
7183
7184        let deserialized: Span =
7185            serde_yaml::from_str("P1y2m3w4dT5h6m7s").unwrap();
7186
7187        span_eq!(deserialized, expected);
7188
7189        let deserialized: Span =
7190            serde_yaml::from_slice("P1y2m3w4dT5h6m7s".as_bytes()).unwrap();
7191
7192        span_eq!(deserialized, expected);
7193
7194        let cursor = Cursor::new(b"P1y2m3w4dT5h6m7s");
7195        let deserialized: Span = serde_yaml::from_reader(cursor).unwrap();
7196
7197        span_eq!(deserialized, expected);
7198    }
7199
7200    #[test]
7201    fn display() {
7202        let span = Span::new()
7203            .years(1)
7204            .months(2)
7205            .weeks(3)
7206            .days(4)
7207            .hours(5)
7208            .minutes(6)
7209            .seconds(7)
7210            .milliseconds(8)
7211            .microseconds(9)
7212            .nanoseconds(10);
7213        insta::assert_snapshot!(
7214            span,
7215            @"P1Y2M3W4DT5H6M7.00800901S",
7216        );
7217        insta::assert_snapshot!(
7218            alloc::format!("{span:#}"),
7219            @"1y 2mo 3w 4d 5h 6m 7s 8ms 9µs 10ns",
7220        );
7221    }
7222
7223    /// This test ensures that we can parse `humantime` formatted durations.
7224    #[test]
7225    fn humantime_compatibility_parse() {
7226        let dur = std::time::Duration::new(60 * 60 * 24 * 411, 123_456_789);
7227        let formatted = humantime::format_duration(dur).to_string();
7228        assert_eq!(
7229            formatted,
7230            "1year 1month 15days 7h 26m 24s 123ms 456us 789ns"
7231        );
7232        let expected = 1
7233            .year()
7234            .months(1)
7235            .days(15)
7236            .hours(7)
7237            .minutes(26)
7238            .seconds(24)
7239            .milliseconds(123)
7240            .microseconds(456)
7241            .nanoseconds(789);
7242        span_eq!(formatted.parse::<Span>().unwrap(), expected);
7243    }
7244
7245    /// This test ensures that we can print a `Span` that `humantime` can
7246    /// parse.
7247    ///
7248    /// Note that this isn't the default since `humantime`'s parser is
7249    /// pretty limited. e.g., It doesn't support things like `nsecs`
7250    /// despite supporting `secs`. And other reasons. See the docs on
7251    /// `Designator::HumanTime` for why we sadly provide a custom variant for
7252    /// it.
7253    #[test]
7254    fn humantime_compatibility_print() {
7255        static PRINTER: friendly::SpanPrinter = friendly::SpanPrinter::new()
7256            .designator(friendly::Designator::HumanTime);
7257
7258        let span = 1
7259            .year()
7260            .months(1)
7261            .days(15)
7262            .hours(7)
7263            .minutes(26)
7264            .seconds(24)
7265            .milliseconds(123)
7266            .microseconds(456)
7267            .nanoseconds(789);
7268        let formatted = PRINTER.span_to_string(&span);
7269        assert_eq!(formatted, "1y 1month 15d 7h 26m 24s 123ms 456us 789ns");
7270
7271        let dur = humantime::parse_duration(&formatted).unwrap();
7272        let expected =
7273            std::time::Duration::new(60 * 60 * 24 * 411, 123_456_789);
7274        assert_eq!(dur, expected);
7275    }
7276
7277    #[test]
7278    fn from_str() {
7279        let p = |s: &str| -> Result<Span, Error> { s.parse() };
7280
7281        insta::assert_snapshot!(
7282            p("1 day").unwrap(),
7283            @"P1D",
7284        );
7285        insta::assert_snapshot!(
7286            p("+1 day").unwrap(),
7287            @"P1D",
7288        );
7289        insta::assert_snapshot!(
7290            p("-1 day").unwrap(),
7291            @"-P1D",
7292        );
7293        insta::assert_snapshot!(
7294            p("P1d").unwrap(),
7295            @"P1D",
7296        );
7297        insta::assert_snapshot!(
7298            p("+P1d").unwrap(),
7299            @"P1D",
7300        );
7301        insta::assert_snapshot!(
7302            p("-P1d").unwrap(),
7303            @"-P1D",
7304        );
7305
7306        insta::assert_snapshot!(
7307            p("").unwrap_err(),
7308            @"an empty string is not a valid `Span`, expected either a ISO 8601 or Jiff's 'friendly' format",
7309        );
7310        insta::assert_snapshot!(
7311            p("+").unwrap_err(),
7312            @"found nothing after sign `+`, which is not a valid `Span`, expected either a ISO 8601 or Jiff's 'friendly' format",
7313        );
7314        insta::assert_snapshot!(
7315            p("-").unwrap_err(),
7316            @"found nothing after sign `-`, which is not a valid `Span`, expected either a ISO 8601 or Jiff's 'friendly' format",
7317        );
7318    }
7319
7320    #[test]
7321    fn serde_deserialize() {
7322        let p = |s: &str| -> Result<Span, serde_json::Error> {
7323            serde_json::from_str(&alloc::format!("\"{s}\""))
7324        };
7325
7326        insta::assert_snapshot!(
7327            p("1 day").unwrap(),
7328            @"P1D",
7329        );
7330        insta::assert_snapshot!(
7331            p("+1 day").unwrap(),
7332            @"P1D",
7333        );
7334        insta::assert_snapshot!(
7335            p("-1 day").unwrap(),
7336            @"-P1D",
7337        );
7338        insta::assert_snapshot!(
7339            p("P1d").unwrap(),
7340            @"P1D",
7341        );
7342        insta::assert_snapshot!(
7343            p("+P1d").unwrap(),
7344            @"P1D",
7345        );
7346        insta::assert_snapshot!(
7347            p("-P1d").unwrap(),
7348            @"-P1D",
7349        );
7350
7351        insta::assert_snapshot!(
7352            p("").unwrap_err(),
7353            @"an empty string is not a valid `Span`, expected either a ISO 8601 or Jiff's 'friendly' format at line 1 column 2",
7354        );
7355        insta::assert_snapshot!(
7356            p("+").unwrap_err(),
7357            @"found nothing after sign `+`, which is not a valid `Span`, expected either a ISO 8601 or Jiff's 'friendly' format at line 1 column 3",
7358        );
7359        insta::assert_snapshot!(
7360            p("-").unwrap_err(),
7361            @"found nothing after sign `-`, which is not a valid `Span`, expected either a ISO 8601 or Jiff's 'friendly' format at line 1 column 3",
7362        );
7363    }
7364}